期刊文献+

运行参数对甲醇重整制氢的热力学特性影响研究

Effect of Operating Parameters on the Thermodynamic Characteristics of Hydrogen Production from Methanol Reforming
原文传递
导出
摘要 针对以氢气为燃料的动力系统运行条件需求,构建了甲醇重整反应热力学和化学平衡反应体系,以某功率型号燃料电池/燃气轮机(Solid Oxide Fuel Cell/Gas Turbine,SOFC/GT)混合动力系统为研究对象,分析其额定工况、变工况运行时,温度、水碳比和压力对各重整产物分布及产氢率的影响。结果表明:额定运行工况下,重整产物中H2摩尔分数为49.8%,碳沉积现象消失;在变工况运行时温度对重整反应的热力学特性和化学平衡特性影响较大,当温度为912 K时产氢率达到峰值2.547,当温度为910 K时碳沉积现象消失,当温度高于912 K时不利于H2的产生;水碳比增加有利于提升产氢率,降低H2摩尔分数,减少积碳和CO的产生,当水碳比为2时产氢率达到2.48,当水碳比为1.25时碳沉积现象消失;压力对重整结果的影响相对较小,在温度为650-910 K时,降低压力有利于提高产氢率。 Aiming at the operating conditions of the power system with hydrogen as fuel,the thermodynamic and chemical equilibrium reaction systems for methanol reforming reaction were constructed.Taking a certain power solid oxide fuel cell/gas turbine(SOFC/GT)hybrid power system as the research object,the effects of its temperature,water-carbon ratio and pressure on the distribution of reformed products and hydrogen production rate under rated and variable operating conditions were analyzed.The results show that under the rated operating conditions of the power system,the reformed product H2 mole fraction in the reforming product accounts for 49.8%,and the carbon deposition phenomenon disappears.Under variable operating conditions,the temperature has a great impact on the thermodynamic and chemical equilibrium characteristics of the reforming reaction.When the temperature is 912 K,the hydrogen production rate reaches the peak of 2.547.When the temperature is 910 K,the carbon deposition phenomenon disappears.When the temperature is higher than 912 K,the thermodynamic environment is not conducive to the generation of H2.The increase in the water-carbon ratio is conducive to increase the hydrogen production rate,reduce the H2 mole fraction and the production of carbon and CO.When the water-carbon ratio is 2,the hydrogen production rate reaches 2.48,and when the water-carbon ratio is 1.25,the carbon deposition phenomenon disappears.The influence of pressure on the reforming result is relatively small.When the temperature is about 650-910 K,reducing the pressure is beneficial to increase the hydrogen production rate.
作者 陈春雨 丁小益 吕小静 翁一武 CHEN Chun-yu;DING Xiao-yi;LYU Xiao-jing;WENG Yi-wu(China-UK Low Carton Cllege,Shanghai Jiao Tong University,Shanghai,China.Post Coode:201306;Schol of Mechanieal Engineering,Shanghai Jiao Tong Univesity,Shanghai,China,Post Cole:200240)
出处 《热能动力工程》 CAS CSCD 北大核心 2021年第8期127-132,共6页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金(51806137)。
关键词 甲醇 蒸汽重整 制氢 热力学 动力系统 methanol steam reforming hydrogen production thermodynamics power system
  • 相关文献

参考文献3

二级参考文献45

  • 1李永峰,林维明,余林.甲醇水蒸气重整制氢CuZn(Zr)AlO催化剂的研究[J].天然气化工—C1化学与化工,2004,29(5):17-20. 被引量:5
  • 2Sherif S A, Barbir F, Veziroglu T N. Wind energy and the hydrogen economy-review of the technology[J]. Solar Ener- gy, 2005,78 : 647.
  • 3Satyapal S, Petrovic J, Read C, et al. The U. S. depart- ment of energy's national hydrogen storage project: Pro- gress towards meeting hydrogen-powered vehicle require- ments[J]. Catal Today,2007,120(3-4) :246.
  • 4Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hy- dride materials for solid hydrogen storage: A review[J]. Int J Hydrogen Energy, 2007,32(9) : 1121.
  • 5Ross D K. Hydrogen storage: The major technological bar- rier to the development of hydrogen fuel cell cars[J]. Va- cuum, 2006,10(80) : 1084.
  • 6Sakata K, Mizutani E, Fukuda K. A review of topics in hy- drogen-related innovative materials in Japan [J]. J Power Sources, 2006,159 : 100.
  • 7第十届全国氢能学术会议暨第二届两岸三地氢能研讨会论文摘要集前言.天津:南开大学,2009.
  • 8Sigfusson T I. Hydrogen energy -abundant, efficient, clean a debate over the energy-system-of-change[J]. Int J Hydro- gen Energy, 2009, 34 (10): 4452.
  • 9O'Brien C M, McKellar J E, et al. High-temperature elec- trolysis for large-scale hydrogen and syngas production from nuclear energy-summary of system simulation and economic analyses[J]. Int J Hydrogen Energy, 2010,35 (10) :4808.
  • 10Kelly D B, Gibson N A, Ouwerkerk T L. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water. Design and initial results [J]. Int J Hydrogen Energy, 2008,33 (11) : 2747.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部