期刊文献+

Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons 被引量:3

原文传递
导出
摘要 Confined nanospace pyrolysis(CNP)has attracted increasing attention as a general strategy to prepare task-specific hollow structured porous carbons(HSPCs)in the past decade.The unique advantages of the CNP strategy include its outstanding ability in control of the monodispersity,porosity and internal cavity of HSPCs.As a consequence,the obtained HSPCs perform exceptionally well in applications where a high dispersibility and tailored cavity are particularly required,such as drug delivery,energy storage,catalysis and so on.In this review,the fundamentals of the CNP strategy and its advances in structural alternation is first summarized,then typical applications are discussed by exemplifying specific synthesis examples.In addition,this review offers insights into future developments for advanced task-specific hollow structured porous materials prepared by the CNP strategy.
出处 《Nano Research》 SCIE EI CSCD 2021年第9期3159-3173,共15页 纳米研究(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.20873014 and 21073026) National Natural Science Foundation for Distinguished Young Scholars(No.21225312) the Cheung Kong Scholars Program of China(No.T2015036).
  • 相关文献

参考文献5

二级参考文献55

  • 1Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation--approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854-7863.
  • 2Vu, A.; Qian, Y. Q.; Stein, A. Porous electrode materials forlithium-ion batteries--how to prepare them and what makes them special. Adv. Energy Mater. 2012, 2, 1056-1085.
  • 3Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.
  • 4Jiang, J4 Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45-58.
  • 5Cao, F. F.; Guo, Y. G.; Wan, L. J. Better lithium-ion batteries with nanocable-like electrode materials. Energy Environ. Sci. 2011, 4, 1634 1642.
  • 6Ye, J. F.; Zhang, H. J.; Yang, R.; Li, X. G.; Qi, L. M. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296-306.
  • 7Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.
  • 8Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.
  • 9Chen, J.; Xu, L.; Li, W.; Gou, X. o~-Fe203 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17,582 586.
  • 10Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.

共引文献42

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部