期刊文献+

基于特征点轨迹的多目标跟踪算法 被引量:3

A multi-target tracking algorithm based on feature point trajectories
下载PDF
导出
摘要 在连续的视频流中,多目标跟踪的任务就是在每一帧中确定目标物体的位置,但是跟踪算法会受到很多外界因素干扰,其中遮挡对跟踪效果的干扰最为严重,为此提出基于特征点轨迹的跟踪算法,用于解决多目标相互遮挡时的跟踪难题.首先跟踪时引入延迟,在处理当前帧时提前获取未来的N帧图像;再提取图像上的特征点并串联成轨迹,根据轨迹来估计目标在N帧之后的位置.根据目标的位置分析目标的运动,从而定位当前帧目标的位置.实验数据表明,这种方法能够有效处理目标遮挡,并且该算法的复杂度比很多传统算法都低,能够在低端处理器上实时运行,满足实际需求. In a continuous video stream,the multi-target tracking task is to determine the positions of the concerned targets in each frame.However,the tracking algorithm suffer from many challenging issues,such as appearance variation,lighting change,occlusion and cluttered background.Especially,occlusion has the most negative impact on tracking performance.Therefore,a tracking algorithm is proposed based on feature point trajectory to solve the tracking problem where multiple targets may occlude each other.The main idea of the proposed tracking algorithm is to introduce the delay during tracking,and acquire future N frame images in advance when processing the current frame;extract feature points from the obtained frame images and connect them to form feature trajectories,and estimate the positions of targets after N frames according to the obtained trajectories.After predicting the future positions of the targets,the motion of targets can be analyzed so as to precisely determine their locations at the current frame.Experiments show the this algorithm can effectively deal with occlusion.Moreover,the complexity of the proposed algorithm is lower than that of many traditional algorithms,which guarantees real-time tracking on the low-end processor in actual applications.
作者 李永军 曹为华 凌强 LI Yongjun;CAO Weihua;LING Qiang(R&D Department, Shangtejie Electric Power Technology Co. Ltd., Hefei 230088,China;Department of Automation, University of Science and Technology of China, Hefei 230027,China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第6期726-732,共7页 JUSTC
基金 国家自然科学基金(61976110,11931008) 山东省自然科学基金(ZR2018MF020) 安徽省新能源汽车暨智能网联汽车产业技术创新工程项目资助.
关键词 多目标跟踪 GMM 特征点轨迹 固定背景 multi-object tracking GMM feature point trajectory fixed background
  • 相关文献

参考文献3

二级参考文献99

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149.
  • 4Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38.
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518.
  • 6Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675.
  • 7Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120.
  • 8Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097.
  • 9Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585.
  • 10Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Un- derstanding, 2009, 113(3): 345-352.

共引文献382

同被引文献36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部