期刊文献+

基于TRP-SEAMRD模型对美国新冠肺炎疫情回顾与预测

Forecast and analysis of the epidemics trend of COVID-19 in the United States by TRP-SEAMRD model
下载PDF
导出
摘要 传统SEIR(susceptible-exposed-infectious-recovered/removed)模型是一种简化的动力学预测模型,没有考虑到防疫政策等变化对疫情发展的影响.我们针对新型冠状病毒肺炎(新冠肺炎)在潜伏期也具有传染性等特征,同时结合美国的抗疫政策,提出了TRP-SEAMRD(test-restricted-phased SEAMRD)模型.该模型较好地拟合了2020年2月~8月美国新冠肺炎感染、康复和死亡人数.通过分析模型提供的数据和曲线,可以抽象出美国新冠肺炎大流行的一些特征.基于TRP-SEAMRD模型,我们评估了美国在疫情发展早期不当的检测政策及之后的“居家隔离令”等防疫措施对疫情发展的影响,分析了未来美国在不同社会控制程度下的新冠肺炎大流行可能的发展趋势.这些模拟可为制定科学的防疫措施提供参考. The traditional SEIR(susceptible-exposed-infectious-recovered/removed) model is a simplified dynamical predictive model which does not consider the impact of changes in the anti-epidemic policy. We take the US anti-epidemic policy and the incubation period characteristic of COVID-19 into account to propose the TRP-SEAMRD(test-restricted-phased SEAMRD) model for the pandemic in US. The model fits well with the figures of COVID-19 infections, recovery and death in the United States during February ~ August 2020. According to the data generated from the model, some of the characteristics of COVID-19 can be abstracted. Based on the TRP-SEAMRD model, we can analyze the impact of the improper anti-epidemic policy at the early stage of the epidemic.The effect of the subsequent "stay at home"epidemic controlling measures is also considered and analyzed. Finally, future development of the pandemic in the US under different degrees of social control is simulated, offering a reference for formulating scientific anti-epidemic measures.
作者 朱科航 陈泽颖 程冯堉 陶万银 朱书 ZHU Kehang;CHEN Zeying;CHENG Fengyu;TAO Wanyin;ZHU Shu(School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;School of Engineering Science, University of Science and Technology of China,Hefei 230027, China;Division of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027, China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第8期1124-1133,共10页 JUSTC
关键词 COVID-19 美国 预测 COVID-19 the United States forecast
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部