期刊文献+

基于改进VGGNet模型的外来入侵植物叶片识别方法 被引量:7

Leaf Recognition Method of Invasive Alien Plants Based on Improved VGGNet Model
下载PDF
导出
摘要 针对自然界中不同种类植物的叶片可能存在类间差异小而导致一些边缘轮廓相似的本土植物和外来入侵植物叶片识别错误的问题,提出一种PF-VGGNet模型。常用的VGGNet模型在图像分类上表现优秀,采用顺次连接的结构,可以很好地提取图像的高级语义信息特征,但一些图像浅层的轮廓和纹理特征也对分类起到关键作用。PF-VGGNet模型可以将浅层轮廓和纹理特征与网络深层高级语义信息融合,实现对植物叶片的自动识别。实验结果表明,PF-VGGNet模型对比其它算法在自建的外来入侵植物叶片数据集上取得了较好的识别效果,在训练集和测试集上的准确率分别为99.89%和99.63%。PF-VGGNet可以有效降低因叶片边缘轮廓相近导致识别错误的问题,能够快速识别外来入侵植物叶片,为防治外来植物入侵提供支持。 In view of the leaves of different species of plants in nature may have small differences,which leads to the problem of leaf recognition errors of some native plants and invasive plants with similar edge profiles,a PF-VGGNet model is proposed.The common VGGNet model performs well in image classification.Using the sequential connection structure,it can extract the high-level semantic information features of the image,but the shallow contour and texture features of some images also play a key role in the classification.The PF-VGGNet model can fuse the shallow contour and texture features with the deep semantic information of the network to realize the automatic recognition of plant leaves.The experimental results show that the PF-VGGNet model has better recognition effect than other algorithms on the self built data set of alien invasive plant leaves,and the accuracy rates in training set and test set are 99.89%and 99.63%respectively.The PF-VGGNet can effectively reduce the problem of recognition error caused by the similar edge contour of leaves,can quickly identify the leaves of alien invasive plants,and provide support for the prevention and control of alien plants.
作者 原忠虎 王维 苏宝玲 YUAN Zhong-hu;WANG Wei;SU Bao-ling(Institute of Scientific and Technological Innovation, Shenyang University, Shenyang 110044, China;School of Information Engineering, Shenyang University, Shenyang 110044, China;College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, China)
出处 《计算机与现代化》 2021年第9期7-11,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(32071553) 辽宁省自然科学基金资助项目(2019-ZD-0546)。
关键词 植物叶片识别 卷积神经网络 VGGNet模型 金字塔特征输入 plant leaf recognition convolutional neural network VGGNet model pyramid feature input
  • 相关文献

参考文献12

二级参考文献61

  • 1陈彦彤,李雨阳,陈伟楠,张献中,王俊生.基于深度语义分割的遥感图像海面舰船检测研究[J].仪器仪表学报,2020,41(1):233-240. 被引量:24
  • 2张辉,马明建.基于改进Sobel算法的叶片图像边缘检测[J].农机化研究,2012,34(5):46-48. 被引量:6
  • 3蔡骋,张明,朱俊平.基于压缩感知理论的杂草种子分类识别[J].中国科学:信息科学,2010,40(S1):160-172. 被引量:16
  • 4王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 5王爱铃,叶明生,邓秋香.MATLAB R2007图像处理技术与应用[M].北京:电子工业出版社,2008:166-167.
  • 6VILLENA-ROMN J, LANA-SERRANO S, CRISTOBAL J C G. Daedalus at ImageCLEF 2011 plant identification task: using SIFT keypoints for object detection [ C ] //Conference and Labs of the Evaluation forum 2011. Amsterdam: Clef Labs & Workshop, 2011.
  • 7BACKES A R, CASANOVA D, BRUNO O M. A complex network-based approach for boundary shape analysis [ J ]. Pattern Recognition, 2009, 42( 1 ) :54-67.
  • 8GHAZI M M, YANIKOGLU B, APTOULA E, et al. Sabanci-okan system in LifeCLEF 2015 plant identification competition [ C ] // Conference and Labs of the Evaluation forum 2015. [ 2015-10- 20 ]. http ://ceur-ws. org/Vol-1391/43-CR, pdf.
  • 9YANIKOGLU B, APTOULA E, TIRKAZ C. Sabanci-okan systemat ImageClef 2012: combining features and classifiers for plant identification[ C]//Conference and Labs of the Evaluation forum 2012. Rome: Clef, 2012.
  • 10LifeCLEF 2015 plant task [ EB/OL ]. [ 2015- 04- 15 ]. http :// www. imageclef, org/lifeclef/2015.

共引文献305

同被引文献115

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部