期刊文献+

融合混合域注意力的YOLOv4在船舶检测中的应用 被引量:9

Application of YOLOv4 with Mixed-domain Attention in Ship Detection
下载PDF
导出
摘要 海上船舶检测在海事监管领域发挥着重要的作用,然而由于海上的复杂环境以及船型的多样性,现有的基于卷积神经网络的方法在船舶检测领域难以同时满足高精度和实时的要求。针对复杂环境下海上船舶实时检测困难的问题,提出一种基于YOLOv4的YOLO-Marine模型,该模型将混合注意力机制引入检测网络的backbone部分,首先使用Mosaic方法对船舶数据进行预处理,然后通过K-Means++聚类得到初始anchor,并在Darknet上实现模型,用真实船舶数据集对模型进行训练和评估。实验结果表明YOLO-marine与YOLOv4相比,将船舶检测任务的mAP提升了2.1个百分点,在保证实时性的同时有效提高了船舶检测的精度,且在小目标和遮挡目标检测方面效果突出。 Marine ship detection plays an important role in the maritime field.Due to the complicated environment and the diversity of ships,existing methods based on convolutional neural network cannot achieve both high accuracy and real-time performance.To solve the problem of ship’s real-time detection in complicated environment,a YOLO-marine model based on YOLOv4 is proposed in which the domain attention mechanism is introduced into backbone.Firstly,the Mosaic method is used to preprocess the ship data.Then the K-Means++algorithm is used to get initial anchors.The model is implemented on Darknet for training and evaluation with the real ship dataset.The experimental result show that compared with YOLOv4,YOLO-marine improves the mAP of ship detection task by 2.1 percentage points.The model can effectively improve the accuracy of ship detection while ensuring real-time performance.It also gives outstanding results in small and occluded target.
作者 赵玉蓉 郭会明 焦函 章俊伟 ZHAO Yu-rong;GUO Hui-ming;JIAO Han;ZHANG Jun-wei(The Second Research Institute of China Aerospace Science and Industry Corporation, Beijing 100039, China;Beijing Aerospace Changfeng Co. Ltd., Beijing 100039, China)
出处 《计算机与现代化》 2021年第9期75-82,共8页 Computer and Modernization
基金 国家重点研发计划项目(2020YFC0833406)。
关键词 船舶检测 数据增强 YOLO K-means++ 注意力机制 ship detection data enhancement YOLO K-means++ attention mechanism
  • 相关文献

参考文献3

二级参考文献20

  • 1刘岩俊,闫海霞,何昕,魏仲慧,王军.基于小波变换的多目标检测方法研究[J].微计算机信息,2008(10):277-278. 被引量:1
  • 2Richard B. Olsen, Paris W. Vachou. Special IssUe on Ship Detection in Costal Waters. Canadian Journal of Remote Sensing, Vol. 27, No.4, August 2001.
  • 3Vachon P W, et al. Validation of ship detection by the RADARSAT synthetic aperture radar and the ocean monitoring workstation. Canadian Journal of Remote Sensing. 2000.
  • 4Michael Kas, Andrew Witkin, Demetri Terzopoulos.Snake: Active Contour Models.In Proceedings of First International Conference on Computer Vision[C]. 1987.
  • 5Stanley Osher,James Sethian.Fronts propagating with Curvature--Dependent speed:algorithms based on Hamihon--Jacobi formulations.Journal of Computational Physics, 1988.
  • 6Ravikanth Malladi,James Sethian, Baha Vemuri.Shape modeling with front propagation: a level set approach.IEEE Transactions on PAMI, 1995.
  • 7Jiang Q, et al. Automatic Detection for Ship Targets in RADARSAT SAR Images from Coastal Regions. Vision interface'99.
  • 8Jiang Q. A System For Ship Detection From SAR Imagery Using Different PDF Models. Ship Detection in Coastal Waters Workshop. 2000.
  • 9Kenneth R. Castleman. Digital Image Processing. USA :Prentice Hall, 1998.
  • 10刘帅,魏贤智,高晓梅.基于中值滤波和多向梯度搜索的目标检测算法[J].电光与控制,2011,18(2):81-84. 被引量:3

共引文献20

同被引文献47

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部