期刊文献+

电压和电流对连续电化学厌氧消化的影响 被引量:2

Effects of voltage and current on electrochemical anaerobic digestion
下载PDF
导出
摘要 电解电压和电流是连续电化学厌氧消化的重要电化学参数,通过影响厌氧消化电活性微生物活性进而影响电化学厌氧消化。研究改变电压和电流,在35℃下运行连续电化学厌氧消化(EAD),分析了不同条件下的产气量、组分含量、底物消耗率及甲烷产率。结果表明,电压的提高有利于EAD体系内电活性微生物的生长进而促进产生电流,4.0 V时EAD产甲烷最高,电活性微生物活性最强与甲烷产率最佳;当电压继续升高至5.0 V与6.0 V,电压过高抑制反应体系类电活性微生物活性,甲烷产率下降。增加电流运行的EAD均有较高的底物消耗率和较高的甲烷产率。 Electrolysis voltage and current are important electrochemical parameters for continuous electrochemical anaerobic consumption,which affect the electrochemical anaerobic consumption by affecting the activity of electroactive microorganisms.The study changes the voltage and current,runs continuous electrochemical anaerobic consumption(EAD)at 35℃,and analyzes the gas production,component content,substrate consumption rate and methane production rate under different conditions.The results show that the increase in voltage is conducive to the growth of electroactive microorganisms in the EAD system and promotes the generation of current.EAD produces the highest methane at 4.0 V,the activity of electroactive microorganisms is the strongest,and the methane yield is the best;when the voltage continues to increase to 5.0 V compared with 6.0 V,the voltage is too high to inhibit the activity of electroactive microorganisms in the reaction system,and the methane yield decreases.The EAD running with increased current has higher substrate consumption rate and higher methane production rate.
作者 刘海波 龙宪钢 许坤德 郑金柱 李建昌 LIU Hai-bo;LONG Xian-gang;XU Kun-de;ZHENG Jin-zhu;LI Jian-chang(School of Energy and Environmental Science,Yunnan Normal University,Kunming 650500,China)
出处 《应用化工》 CAS CSCD 北大核心 2021年第8期2098-2101,2107,共5页 Applied Chemical Industry
基金 国家自然科学基金(21968038)。
关键词 电化学厌氧消化(EAD) 电压 电流 甲烷产率 electrochemical anaerobic digestion(EAD) voltage current methane yield
  • 相关文献

参考文献2

二级参考文献36

  • 1刘建华,郭洪光,刘艳君.气相色谱法测定工业废水厌氧反应中的挥发性脂肪酸[J].长春师范学院学报(自然科学版),2005,24(3):42-43. 被引量:9
  • 2张浩勤,张伟,张翔,刘金盾.气相色谱法测定牛粪厌氧发酵液中挥发性脂肪酸[J].郑州大学学报(工学版),2007,28(2):51-53. 被引量:12
  • 3Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X., Li, D., et al., 2014. A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem. Commun. 45,67-70.
  • 4Bouwer, E.J., McCarty, P.L., 1983. Effects of2-bromoethanesulfonic acid and 2-chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl. Environ. Microbial. 45, 1408-1410.
  • 5Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42, 3401-3406.
  • 6Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, c.A., Turnbaugh, P.J., et al., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108, 4516-4522.
  • 7Caporaso,J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621-1624.
  • 8Cheng, S., Xing, D., Call, D.F., Logan, B.E., 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958.
  • 9Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., Li, D., 2013. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrog. Energy 38, 3497-3502.
  • 10Liu, H., Logan, B.E., 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040-4046.

共引文献21

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部