期刊文献+

Cr掺杂以及Mo和Cr双掺Mn_(4)Si_(7)的第一性原理计算

The first-principles calculation of Cr doped and Mo,Cr co-doped Mn_(4)Si_(7)
下载PDF
导出
摘要 采用基于密度泛函理论中第一性原理的赝势平面波法,分别对本征Mn_(4)Si_(7)、Cr掺杂Mn_(4)Si_(7)以及Cr和Mo双掺Mn_(4)Si_(7)的电子结构及光学性质进行了计算和分析.计算结果表明本征Mn_(4)Si_(7)禁带宽度为E g=0.813 eV,Cr掺杂Mn_(4)Si_(7)禁带宽度为E g=0.730 eV,Cr和Mo双掺Mn_(4)Si_(7)禁带宽度为E g=0.620 eV,均为间接带隙半导体、p型掺杂.此外,在低能区掺杂体系的介电函数、折射率、消光系数、吸收系数以及光电导率均强于本征Mn_(4)Si_(7),表明Cr掺杂Mn_(4)Si_(7)以及Cr和Mo双掺Mn_(4)Si_(7)有运用于红外光电子器件的巨大潜力. The pseudopotential plane wave method based on the first principle of density functional theory was used to calculate and analyze the electronic structures and optical properties of intrinsic Mn_(4)Si_(7),Cr doped Mn_(4)Si_(7)and Cr,Mo co-doped Mn_(4)Si_(7).The results show that the forbidden band width of intrinsic Mn_(4)Si_(7)is E g=0.813 eV,the forbidden band width of Cr doped Mn_(4)Si_(7)is E g=0.730 eV,and the forbidden band width of Cr,Mo co-doped Mn_(4)Si_(7)is E g=0.620 eV,all of which are indirect band-gap semiconductor and P-type doping.In addition,the dielectric function,refractive index,extinction coefficient,absorption coefficient and photoconductivity of the doped system in the low energy area are all stronger than the intrinsic Mn_(4)Si_(7),indicating that Cr doped Mn_(4)Si_(7)and Cr,Mo co-doped Mn_(4)Si_(7)have great potential to be used in infrared optoelectronic devices.
作者 杨顺吉 张晋敏 谢杰 冯磊 贺腾 YANG Shun-Ji;ZHANG Jin-Min;XIE Jie;FENG Lei;HE Teng(Institute of New Optoelectronic Materials and Technology,College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《原子与分子物理学报》 CAS 北大核心 2021年第5期142-148,共7页 Journal of Atomic and Molecular Physics
基金 贵州省自然科学基金(黔科合基础[2018]1028) 贵州大学研究生重点课程项目(贵大研ZDKC[2015]026) 国家自然科学基金(61264004) 贵州省高层次创新型人才培养项目(黔科合人才(2015)4015)。
关键词 Mn_(4)Si_(7) 掺杂 第一性原理 电子结构 光学性质 Mn_(4)Si_(7) Doping First principles Electronic structure Optical properties
  • 相关文献

参考文献7

二级参考文献96

  • 1[1]Mahan G, Sales B, Sharp J. Thermoelectric materials:new approaches to an old problem [J ]. Physics Today,March 1997, 50: 42- 47.
  • 2[2]Disalvo J F. Thermoelectric cooling and power generation[J]. Science, 1997, 285: 703-706.
  • 3[3]Tritt T M. Holey and unholy [J]. Science, 1999, 283:804 - 805.
  • 4[4]Zhu T J, Zhao X B, Hu S H. Phase transition of FeSi2 and Fe2Si5 based alloys prepared by melt spinning [J]. J Mater Sci Lett, 2001, 20: 1831- 1833.
  • 5[5]Kishimoto K, Nagamoto Y, Miki T, et al. Microstructure and thermoelectric properties of Cr - doped β - FeSi2 sintered with micrograins treated in radio frequency plasmas of SiH4 and GeH4 gases [J]. J Appl Phys, 2002, 92:4393 - 4401.
  • 6[6]Lenoir B, Dauscher A, Poinas P, et al. Electrical performance of skutterudites solar thermoelectric generators[J]. Appl Thermal Eng, 2003, 23:1407 - 1415.
  • 7[7]Ravot D, Lafont U, Chapon L, et al. Anomalous physical properties of cerium - lanthanum filled skutterudites [J]. J Alloys Comp, 2001, 323-324:389-391.
  • 8[8]Ohta Y, Miura S, Mishima Y. Thermoelectric semiconductor iron disilicides produced by sintering elemental powders [J]. Intermetallics, 1999, 7: 1203- 1210.
  • 9[9]Nishida I. Semiconducting properties of nonstoichiometric manganese silicides [J]. J Mater Sci, 1972, 7: 435 -440.
  • 10[10]Stoehrer U. Measurement of the transport properties of FeSi2 and HMS by utilization of the Peltier effect in the ternperature rang 50 - 800℃ [J]. Meas Sci Tech, 1994, 5:440 - 446.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部