摘要
质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)被认为是提高小型无人机续航能力的最有前景的动力源,也是未来绿色航空发展的方向之一,它的性能决定了无人机的任务能力。双极板是PEMFC中的关键组件,其中流道结构更是决定着PEMFC的水热管理、质量输运和电流密度分布,深刻影响燃料电池的综合性能。不同流道结构各有优缺点,充分了解流道结构对性能的影响可以对不同应用背景下的流道设计以及改进工作提供参考。本文对现有的常规和新型双极板流道结构进行了总结,归纳和分析了不同流道结构特征对PEMFC性能的影响。从流道横截面形状、长度、数量、宽度和挡板位置等方面入手探究增强PEMFC性能的高效流道结构设计方案。
Proton exchange membrane fuel cell(PEMFC)is considered as the most promising power source for improving the endurance of small unmanned aerial vehicles,and it is also one of the future development directions of green aviation.Its performance determines the mission capabilities of unmanned aerial vehicles.The bipolar plate is a key component in PEMFC,and the flow channel structure in the bipolar plate also determines the water and heat management,mass transport and current density distribution of PEMFC,which profoundly affects the overall performance of the fuel cell.Different structures have their own advantages and disadvantages.In order to provide important guidance for channel design and improvement under different application backgrounds,we need to fully understand the effect of channel structures on fuel cell’s performance.Therefore,in this paper,the existing conventional and new bipolar channel structures are summarized and the influence of different channel structure characteristics on PEMFC performance is also analyzed.In addition,this paper explores the efficient channel structure design scheme,including the cross-section shape,length and number,width and baffle position and so on,to enhance the performance of PEMFC.
作者
梁凤丽
闻冉冉
毛军逵
贺振宗
王任廷
LIANG Fengli;WEN Ranran;MAO Junkui;HE Zhenzong;WANG Renting(College of Energy and Power Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China)
出处
《南京航空航天大学学报》
CAS
CSCD
北大核心
2021年第4期477-503,共27页
Journal of Nanjing University of Aeronautics & Astronautics
基金
国防基础科研计划重点(JCKY2018605B006)资助项目
航空科学基金(201928052002)资助项目。
关键词
质子交换膜燃料电池
双极板
流道结构
3D流道
净功率
proton exchange membrane fuel cell(PEMFC)
bipolar plate
flow channel structure
3D flow field
net power