摘要
随着科技的快速发展,智慧化物流技术开创了仓储的新阶段。当前仓库系统规模庞大、存储货物种类繁多,因此,需要借助数字化技术对仓储载体及对象进行规划、设计,实现低成本、高效率的运行状态。基于S冷链物流中心存储与补货策略的相关数据,文中运用双标准ABC分类法及Apriori算法对商品相关性进行数据挖掘,进而对储位规划与补货策略进行优化与设计,提升了仓库的利用率,降低了仓储整体成本。
With the rapid development of science and technology,intelligent logistics technology has created a new stage of warehousing.The current warehouse system has a large scale and a wide variety of stored goods,so it is necessary to use digital technology to plan and design the storage carrier and object,so as to achieve low cost and high efficiency.Based on the relevant data of storage and replenishment strategy of S cold chain logistics center,this paper uses double-standard ABC classification and Apriori algorithm to carry out data mining for commodity correlation,and then optimizes and designs the storage location planning and replenishment strategy,which improves the utilization rate of the warehouse and reduces the overall storage cost.
作者
陈浩鹏
黄颖
CHEN Hao-peng;HUANG Ying(Jiangsu University of Science and Technology,Zhangjiagang Campus,Zhangjiagang 215600;Jiangsu University of Science and Technology,Modern Logistics Research Center of CSSC,Zhangjiagang 215600,China)
出处
《物流工程与管理》
2021年第8期34-37,12,共5页
Logistics Engineering and Management
基金
江苏省教育科学“十三五”规划项目(D-2018-01-61),苏州市科技计划项目“农产品冷链运输与配送新装备创新应用示范工程”。
关键词
储位规划
补货策略
双标准ABC分类
APRIORI算法
相关性分析
storage planning
replenishment strategy
double standard ABC classification
Apriori algorithm
correlation analysis