期刊文献+

一种轻量级的卷积神经网络的行人检测方法 被引量:6

A PEDESTRIAN DETECTION METHOD BASED ON LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORK
下载PDF
导出
摘要 为了解决传统前端行人检测算法准确率低以及鲁棒性差的问题,提出将前端嵌入式设备与人工智能芯片搭载的轻量级神经网络相结合的方法,以实现在前端嵌入式设备中完成更加准确、稳定的行人检测。针对前端嵌入式设备性能不足的问题,提出一种轻量级卷积神经网络模型,通过对网络框架的重新设计以及使用聚类分析重新定义候选框尺寸的方法,大大减少网络权重以及计算量。实验结果表明:该方法相较于传统行人检测方法有着更高的检测精度,并在嵌入式行人检测加速方面具有显著效果,可达到每幅图片62 ms的检测速度。 In order to solve the problem of low accuracy and poor robustness of the traditional front-end pedestrian detection algorithm,this paper proposes a method combining the front-end embedded device and the lightweight neural network equipped with the artificial intelligence chip to achieve more accurate and stable pedestrian detection in front-end embedded devices.Aiming at the insufficient performance of the front-end embedded devices,a lightweight convolutional neural network model was proposed,and it reduced network weights and computations by redesigning the network framework and redefining candidate frame sizes using cluster analysis.The experimental results show that the method has higher detection accuracy than the traditional pedestrian detection method,and has significant effect on the embedded pedestrian detection acceleration,which can achieve the detection speed of 62ms per picture.
作者 熊寿禹 陶青川 戴亚峰 Xiong Shouyu;Tao Qingchuan;Dai Yafeng(School of Electronic Information,Sichuan University,Chengdu 610065,Sichuan,China)
出处 《计算机应用与软件》 北大核心 2021年第9期220-225,231,共7页 Computer Applications and Software
关键词 卷积神经网络 行人检测 嵌入式系统 实时检测 Convolutional neural network Pedestrian detection Embedded systems Real-time detection
  • 相关文献

参考文献4

二级参考文献7

共引文献288

同被引文献49

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部