摘要
【目的】为了从记录用户个体行为的时空数据中挖掘用户特征,构建行为模型,发现共现群体,本文以公开的网吧记录数据为基础,设计并实现了一个可视分析系统SRDVis。【方法】本文基于该类时空数据的固有属性和特征,通过对原始数据的处理、统计及分析,结合可视化设计、要素关联、人机交互等方法与技术,研发完成了可满足本领域数据分析任务的可视化系统。【结果】针对网吧用户行为记录数据特点,本文设计了多种可视化视图,可从不同视角展示数据特征,满足了业务监管人员对本领域数据的管理及分析需求。【结论】SRDVis系统通过2个基于真实业务场景案例的分析,验证了分析方法的有效性和系统的可用性,可以实现对此类时空数据的可视分析需求,系统具有一定的扩展性,能够在多种业务领域中得到应用。
[Objective]In order to mine user characteristics,build behavioral models,and discover co-occurring groups from the spatio-temporal data of individual user behaviors,we design and implement a visual analysis system SRDVis based on the public internet cafe record data.[Methods]On the basis of the inherent attributes and characteristics of this type of data,we have developed a visualization system that can meet the requirements of data analysis tasks in this field through processing,statistics and analysis of the raw data,combined with methods and technologies such as visualization design,element correlation,and human-computer interaction.[Results]Aiming at the characteristics of user behavior record data in internet cafes,we design various visualization views that can display data characteristics from different perspectives.These views meet the needs of business supervisors for the management and analysis of data in this field.[Conclusions]We have verified the effectiveness of the analysis method and the system usability through two case studies based on real business scenarios.This system can realize visual analysis of such spatio-temporal data.In addition,the system also has a certain degree of scalability and can be used in a variety of business areas.
作者
赵凡
马小东
任芃锟
ZHAO Fan;MA Xiaodong;REN Pengkun(Xinjiang Technical Institute of Physics&Chemistry,Chinese Academy of Sciences,Urumqi,Xinjiang 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,Urumqi,Xinjiang 830011,China)
出处
《数据与计算发展前沿》
CSCD
2021年第4期70-80,共11页
Frontiers of Data & Computing
基金
国家重点研发计划(2018YFC0825300)。
关键词
时空数据
可视分析
网吧记录
共现群体
spatio-temporal data
visual analysis
records of internet cafe
co-occurrence groups