期刊文献+

热门数字音频预测技术综述 被引量:1

A Survey on Popular Digital Audio Prediction Techniques
下载PDF
导出
摘要 【目的】近些年网络数字音频受众愈发广泛,研究热门数字音频预测技术对于数字音频领域的发展具有重要意义。【文献范围】我们采用关键词检索和引文二次检索的方法收集了该领域相关的论文。【方法】本文通过广泛的文献查阅,总结了在该研究领域中学者们对热门指标的定义,归纳了预测热门音频常用的四大类内部特征,综述和分析了常用的预测模型,并展望了热门数字音频预测技术未来的发展趋势和研究方向。【结果】通过选取恰当的特征表示,可以成功地预测热门音乐与热门播客,其中热门音乐预测领域的研究成果更为丰富可观。【局限】国内学术界对热门音频预测领域开展的研究较少,因而所能检索到的中文文献也较为匮乏。【结论】热门数字音频预测领域仍然存在着广阔的发展空间,尤其是我国热门播客预测领域仍存在着很大的研究空白。 [Objective]In recent years,the number of online digital audio audiences have increased greatly.It is of great significance to study the popular digital audio prediction techniques for the development of digital audio systems.[Coverage]Relevant papers in this field are collected by using keyword search and citation retrieval.[Methods]Through extensive literature review,we have summarized the definitions of popular indicators by scholars in this research field,categorized the four main types of internal features commonly used for predicting popular audio,reviewed and analyzed commonly used prediction models.We also forecast the future development trends and research directions of this field.[Results]By selecting appropriate feature representations,popular music and popular podcasts can be successfully predicted,in which the research on popular music prediction are more versatile and impressive.[Limitations]There is little domestic research in the field of popular audio prediction,so the number of retrieved Chinese literature is very small.[Conclusions]There is still huge growth potential in popular digital audio prediction,especially for podcast prediction,which is still an underdeveloped realm in China.
作者 张怡宁 何洪波 王闰强 ZHANG Yining;HE Hongbo;WANG Runqiang(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《数据与计算发展前沿》 CSCD 2021年第4期81-92,共12页 Frontiers of Data & Computing
基金 中国科学院信息化专项“新媒体环境下的科学传播平台”(XXH13504-04)。
关键词 数字音频 音乐 播客 热度预测 音频特征 机器学习 深度学习 digital audio music podcast popularity prediction audio features machine learning deep learning
  • 相关文献

参考文献4

二级参考文献6

共引文献33

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部