期刊文献+

嵌有非天然氨基酸蛋白质的生物合成及其纯化鉴定

Biosynthesis,Purification and Identification of Protein Embedded with Unnatural Amino Acid
下载PDF
导出
摘要 基于基因密码子扩展技术,构建能够嵌入非天然氨基酸pBpa蛋白质的大肠杆菌BL21(DE3)双质粒原核表达工程菌株,原核表达后,通过Ni-NTA纯化介质的初步纯化以及AKTA蛋白纯化系统的Superdex75分子筛进一步精细纯化,获得了在IL-1β的5号预设位点上嵌入了非天然氨基酸pBpa的嵌合体蛋白,并且通过质谱确认pBpa在预设位点的精准插入.本研究证明基于密码子扩展技术构建的双质粒工程菌可以将非天然氨基酸pBpa插入到IL-1β的特定位点,能够生物合成并纯化出大量的非天然氨基酸嵌合体蛋白质,这为其他非天然氨基酸或其他功能蛋白及其特异性位点的非天然氨基酸嵌合蛋白的生物合成奠定了基础. In this study,based on codon expansion technology,we constructed E.coli BL21(DE3)double plasmid prokaryotic expression engineering strain,which can embed protein with the unnatural amino acid pBpa.After prokaryotic expression,the unnatural amino acid pBpa protein was obtained by preliminary purification of Ni-NTA purification medium and further fine purification of Superdex75 molecular sieve of AKTA protein purification system.The chimeric protein of pBpa was identified by mass spectrometry.This study demonstrated that the two plasmid engineering bacteria constructed based on codon extension technology can insert the unnatural amino acid pBpa into the specific site of IL-1β,and can biosynthesize and purify a large number of unnatural amino acid chimeric proteins,which laid a foundation for the biosynthesis of other unnatural amino acids or other functional proteins and their specific site unnatural amino acid chimeric proteins.
作者 马韩轲 李闰婷 张丽萌 张函 裴若兰 陈肖皖 陈龙欣 MA Hanke;LI Runting;ZHANG Limeng;ZHANG Han;PEI Ruolan;CHEN Xiaowan;CHEN Longxin(Molecular Biology Laboratory,Zhengzhou Normal University,Zhengzhou 450044,China;College of Life Sciences,Zhengzhou Normal University,Zhengzhou 450044,China)
出处 《河南科学》 2021年第8期1245-1249,共5页 Henan Science
基金 郑州师范学院大学生创新性实验计划(DCY2019011) 国家自然科学基金面上项目(32071447) 河南省自然科学基金项目(202300410509) 国家级大学生创新创业训练计划(202012949006)。
关键词 非天然氨基酸 pBpa 基因密码子扩展技术 白细胞介素-1Β unnatural amino acids pBpa gene codon expansion technology IL-1β
  • 相关文献

参考文献3

二级参考文献60

  • 1Liu C C, Schultz P G. Adding new chemistries to the genetic code[J]. Annu Rev Biochem,2010,79(1):413-444.
  • 2Brustad E M, Arnold F H. Optimizing non-natural protein function with directed evolution[J]. Curr Opin Chem Biol,2010,15(2) 201-210.
  • 3Sletten E M, Bertozzi C R. Bioorthogonal chemistry fishing for selectivity in a sea of functionality[J]. Angew Chem Int Edit,2009,48 (38) :6974-6998.
  • 4Basl6 E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids[J]. Chem Biol, 2010,17 (3) : 213-227.
  • 5Voloshchuk N, Montclare J K. Incorporation of unnatural amino acids for synthetic biology[J]. MolBioSyst. ,2009,6 (1) 65-80.
  • 6Young T S, Schultz P G. Beyond the canonical 20 amino acids: expanding the genetic lexicon[J]: J Biol Chem,2010,285(15):11039- 11044.
  • 7Wang Lei, Xie Jianming, Schultz P G. Expanding the genetic code[J]. Annu Rev Biophys Biomol Struct,2006,35(10) :225-249.
  • 8Wang Lei, Schultz P G. Expanding the genetic code[J]. Angew Chem Int Edit,2005,44(1):34-66.
  • 9Hendrickson T L, Cr6cy-Lagard V D, Schimmel P. Incorporation of nonnatural amino acids into proteins[J]. Annu Rev Biochem, 2004,73(1) : 147-176.
  • 10Montclare J K, Son S, Clark G A, et al. Biosynthesis and stability of coiled coil peptides containing (2S, 4R) 5, 5, 5 trifluoroleucine and (2S, 4S) 5, 5, 5 trifluoroleueine[J]. ChemBioChem, 2009, 10(1): 84-86.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部