期刊文献+

基于视觉和定位系统的无人艇自主对接系统 被引量:5

Autonomous docking system for USV based on vision and position system
下载PDF
导出
摘要 为实现对无人艇的自主回收,通过无人艇和悬浮托架的双向视觉导引,构建基于视觉和定位系统的无人艇自主对接系统。视觉对接系统通过检测网络分别检测出图像中的无人艇和悬浮托架。针对托架视觉检测的目标,利用位置定位信息排除非目标艇,采用单目标跟踪算法(CSR-DCF)对目标艇进行跟踪。为实现无人艇和托架的高精度稳定检测,在Tiny-YOLOv3的基础上,基于细节特征的需求,构建小尺度检测分支,提出一种定位增强轻量级检测网络,对于艇、托架的定位性能分别提升3.48%mIOU、4.32%mIOU,检测精度分别提升4.97%AP、6.17%AP。自主对接系统在二级海况下对接成功率达到90.9%。 To autonomously recycle USV,autonomous docking system for USV based on vision and position system with bidirectional visual guidance of USV and floating bracket was established.Vision-based docking system detected USV and floating bracket in images with detection network.According to the targets detected by bracket,position information was used to get rid of the interfering targets,the target USV was tracked with single target tracking algorithm(CSR-DCF).To realize precise and stable detection of USV and bracket,a location performance enhanced detection network was put forward.On the basis of Tiny-YOLOv3,the network added small scale detection branch for minutiae feature.Location performance for USV and brackets is increased by 3.48%mIOU and 4.32%mIOU while detection precision is increased by 4.97%AP and 6.17%AP.Success pro-bability of autonomous docking system reaches 90.9%under secondary sea state.
作者 徐海彬 刘畅 田建东 李小毛 XU Hai-bin;LIU Chang;TIAN Jian-dong;LI Xiao-mao(School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China)
出处 《计算机工程与设计》 北大核心 2021年第9期2606-2613,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(91648118、61673254) 科技部重点研发计划基金项目(2018YFF0103400)。
关键词 自主对接 轻量级网络 目标检测 单目标跟踪 无人艇 autonomous docking light-weight network object detection single target tracking USV
  • 相关文献

参考文献5

二级参考文献59

  • 1刘辉,赵远征,严军.艉滑道式小艇收放装置液压系统的设计与分析[J].中国舰船研究,2012,7(3):68-73. 被引量:7
  • 2金迎村,张建平,李祥宁,夏翔,袁建雄.尾滑道式船载小艇收放系统的研发及应用[J].船舶工程,2005,27(6):45-48. 被引量:15
  • 3燕奎臣,吴利红.AUV水下对接关键技术研究[J].机器人,2007,29(3):267-273. 被引量:54
  • 4Park J Y, Jun B H, Lee P M, et al. Experiments on vision guideddocking of an autonomous underwater vehicle using one cam-era[J]. Ocean Engineering, 2009, 36(1): 48-61.
  • 5McEwen R S, Hobson B W, McBride L,et al. Docking controlsystem for a 54-cm-diameter AUV[J]. IEEE Journal of OceanicEngineering, 2008, 33(4): 550-562.
  • 6Davis D T. Precision control and maneuvering of the Phoenixautonomous underwater vehicle for entering a recovery tube[D].Monterey, USA: Naval Postgraduate School, 1996: 67-81.
  • 7Cowen S, Briest S, Dombrowski J. Underwater docking ofautonomous undersea vehicles using optical terminal guid-ance[C]//Oceans 97 MTS/IEEE Conference. Piscataway, USA:IEEE, 1997: 1143-1147.
  • 8Maire F, Prasser D, Dunbabin M, et al. A vision based target de-tection system for docking of an autonomous underwater vehi-cle[C]//Australasian Conference on Robotics and Automation.Sydney, Australia: Australian Robotics and Automation Asso-ciation Inc” 2009.
  • 9Feezor M D, Sorrell F Y,Blankinship P R, et al. Autonomousunderwater vehicle homing/docking via electromagnetic guid-ance[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):515-521.
  • 10Deltheil C, Didier L, Hospital E, et al. Simulating an opticalguidance system for the recovery of an unmanned underwatervehicle[J]. IEEE Journal of Oceanic Engineering, 2000, 25(4):568-574.

共引文献100

同被引文献48

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部