期刊文献+

基于信息质量选择的动态航迹融合算法

Dynamic Track Fusion Algorithm Based on Information Quality Selection
下载PDF
导出
摘要 传统的航迹融合算法未充分考虑传感器精度和量测丢失对航迹质量的影响,从而导致融合后的航迹质量下降。为了提高跟踪性能,提出一种基于信息质量选择的动态航迹融合算法。该算法通过交互式多模型补偿滤波来获得局部航迹和信息熵,然后利用信息熵来度量局部航迹质量。根据设置的双门限筛选出质量好的局部航迹,并将其信息熵归一化的结果赋给传感器的权值,实现权值的动态分配。仿真结果表明,在考虑不同的传感器精度和量测丢失率的情况下,该算法对机动目标的跟踪性能优于已知的航迹融合算法。 The traditional track fusion algorithm does not fully consider the situation that the accuracy of sensors and the measurement loss lead to the track quality degradation.In order to improve the performance of dynamic tracking,a dynamic track fusion algorithm based on information quality selection is proposed.The algorithm obtains the local track and information entropy by interacting multiple model compensation filtering,and then uses the information entropy to measure the quality of the local track.The local track with good quality is selected according to the double threshold.Then,the information entropy normalization result is assigned to the weight of the sensor to realize the dynamic matching of the weight.The simulation results show that the algorithm outperforms the known track fusion algorithm in tracking maneuvering targets with different sensor accuracy and measurement losses.
作者 甄绪 刘方 夏玉萍 Zhen Xu;Liu Fang;Xia Yuping(National Key Laboratory of Science and Technology on Automatic Target Recognition,National Defense Science and Technology University,Changsha 410005,China)
出处 《航空兵器》 CSCD 北大核心 2021年第4期30-36,共7页 Aero Weaponry
关键词 多传感器 量测丢失 信息熵 航迹选择 航迹融合 目标跟踪 multi sensor measurement loss information entropy track selection track fusions target tracking
  • 相关文献

参考文献3

二级参考文献25

  • 1王国宏 ,钟晓军 ,朱华邦 .雷达目标跟踪中的非线性滤波技术[J].海军航空工程学院学报,2004,19(5):540-544. 被引量:10
  • 2BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation[M]. New York: Wiley, 2001.
  • 3SINOPOLI B, SCHENATO L, FRANSCESCHETTI M, et al.Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453 - 1464.
  • 4FARINA A, RISTIC B, TIMMONER/L. Cramer-Rao bound for non- linear filtering with Pd < i and its application to target tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1916 - 1924.
  • 5HERNANDEZ M, RISTIC B, FARINA A, et al. A comparison of two Cramer-Rao bounds for nonlinear filtering with Pd < 1[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2361 - 2369.
  • 6VAN TREES H. Detection, Estimation, and Modulation Theory, Part Ⅰ[M]. New York: Wiley, 1968.
  • 7TICHAVSKY P, MURAVCHIK C H, NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386 - 1396.
  • 8KERR T H. Status of CR-like lower bounds for nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(9): 590 - 601.
  • 9NAHI N E. Optimal recursive estimation with uncertain observation[J]. IEEE Transactions on Information Theory, 1969, 15(7): 457 - 462.
  • 10ROBERT A M. Discrete optimal linear smoothing for systems with uncertain observations[J]. IEEE Transactions on Information Theory, 1975, 21(3) : 271 - 275.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部