期刊文献+

偏正态分布参数的贝叶斯估计 被引量:1

Bayes Estimation of Partial Normal Distribution Parameters
原文传递
导出
摘要 经典学派很注重已经出现的样本观察值,对于未观察到的样本不予考虑.贝叶斯学派很注重先验信息的收集、挖掘和加工,使它们数量化成先验分布,参与到统计推断中,以此提高统计推断的质量.研究了广义加权损失函数的贝叶斯估计,并且基于偏正态分布,建立了不同损失函数下的贝叶斯估计,并运用Matlab进行数值模拟,分别得到了偏正态分布的位置参数以及尺度参数与样本容量之间的关系图,由图比较了在同一损失函数下样本容量与各参数的贝叶斯估计之间的关系,并分析了不同损失函数下贝叶斯估计的差异性. The classical school pays much attention to using observations have not observed samples,samples will not be considered.Bayesian school pays much attention to the prior information collection,mining and processing,make them into the number of prior distribution,to participate in statistical inference,in order to improve the quality of statistical inference.This paper is based on normal distribution,establish estimates Bayesian under different loss functions,and the use of Matlab numerical simulation,obtained the position parameters of partial normal distribution as well as the relationship between map scale parameter and sample capacity,by compared the relationship between sample size and various parameters in the same loss function,and analyzes the difference between the estimated under different loss functions Bayesian.
作者 谭涛 吴黎军 TAN Tao;WU Li-jun(School of Mathematics and Systems Science,Xinjiang University,Urumqi 830046,China)
出处 《数学的实践与认识》 2021年第16期181-188,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11861064) 自治区自然科学基金(2018D01C074)。
关键词 偏正态分布 贝叶斯估计 广义加权损失函数 平方损失函数 指数损失函数 Esscher损失函数 the skew normal distribution bayes estimation generalized weighted loss function square loss function exponential loss function esscher loss function
  • 相关文献

参考文献3

二级参考文献30

  • 1茆诗松 王静龙 濮晓龙.高等数理统计[M].北京:高等教育出版社,1988.448-458.
  • 2张尧庭 陈汉峰.贝叶斯统计推断[M].北京:科学出版社,1994.193-196.
  • 3Pewsey A. Large-Sample Inference for the General Half-normal Distribution [ J ]. Commun Statist Theor Meth, 2002, 31(7) : 1045-1054.
  • 4Pewsey A. Improved Likelihood Based Inference for the General Half-normal Distribution [ J ]. Communications in Statistics: Theory and Methods, 2004, 33(2) : 197-204.
  • 5Wiper M P, Giron F J, Pewsey A. Objective Bayesian Inference for the Half-normal and Half-t Distributions [ J ]. Communications in Statistics : Theory and Methods, 2008, 37 (20) : 3165-3185.
  • 6Zhang D , Davidian M. Liner Mixed Models With Flexible Distribu- tions of Random Effects for Longitudinal Data [J]. Biometrics,2001, (57).
  • 7Ghidey W , Lesaffre E , Eilers, P. Smooth Random Effects Distribu- tion in A Linear Mixed Model [J]. Biometrics,2004,(60).
  • 8Arellano-Valle R B , Bolfarine H , Lachos V H. Bayesian Inference for Skew-Normal Linear Mixed Models [J]. Journal of Applied Statis- ticS, 2007,(34).
  • 9Arellano-Valle R B , Genton M G. Fundamental Skew Distributions [J]. Journal of Multivariate Analysis,2005,(96).
  • 10Sahu S K , Dey D K, Branco M . A New Class of Multivariate Distri- butions With Applications to Bayesian Regression Models [J]. The Ca- nadian Journal of Statistics, 2003,(29).

共引文献10

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部