摘要
通过构造适当的单胞函数对一类小周期结构带有阻尼项热力耦合的偏微分方程组进行双尺度渐近展开,得到了对应问题的均匀化方程和均匀化常数,并分析了双尺度渐近解的误差估计.
The two-scale asymptotic expansion of a class of coupled thermoelastic partial differential equations with damping term is carried out by constructing an appropriate cell functions.The homogenization equations and homogenization constants of the corresponding problems are obtained,and the asymptotic error estimates of the two-scale solutions are analyzed.
作者
李志青
曾鹏
李远飞
LI Zhi-qing;ZENG Peng;LI Yuan-fei(Guangzhou Huashang College,Guangzhou 511300,China)
出处
《数学的实践与认识》
2021年第16期189-195,共7页
Mathematics in Practice and Theory
基金
广州华商学院校内导师制项目(2021HSDS13)
国家自然科学基金(11671304)
广东省自然科学基金(2017A030313037)。
关键词
热力耦合问题
双尺度
均匀化
小周期结构
coupling thermoelastic problem
two-scale method
homogenization
small periodic structure