期刊文献+

气体箔片轴承静态工作点求解 被引量:1

Solution of Quiescent Point in Gas Foil Bearings
下载PDF
导出
摘要 气体箔片轴承静态工作点的计算属于典型的弹流耦合问题,需要进行可压缩流体雷诺方程和板壳弹性变形方程的耦合迭代求解。为确定任意给定载荷下气体箔片轴承的静态工作点,提出了一种“二分法搜索+不动点迭代”的求解策略,二分法用于搜索偏心率,不动点迭代用于寻找偏位角。弹流耦合求解中雷诺方程采用基于质量流量守恒的差分法离散进行超松弛迭代求解,顶层箔片采用Kirchhoff薄板模型进行有限元求解,以整周式及三瓦插入式气体箔片轴承为算例进行了求解及分析,结果表明:偏心率、偏位角与文献[2]最大误差分别为6.60%和3.76%,且偏心率的误差随着外载荷的增大会显著减小;相对于刚性表面轴承,柔性表面轴承中的偏位角对偏心率的变化更加敏感。 The calculation of quiescent point of gas foil bearings(GFB)is a typical elastohydrodynamic coupling problem,requiring the coupling iterative solution of the Reynolds equation of compressible fluid and the elastic deformation equation of plate-shell.In order to determine the quiescent point of GFB under any given load,a solution strategy of“dichotomy search+fixed point iteration”is proposed,where the dichotomy is used to search eccentricity,and the fixed point iteration is used to find attitude angle.During the elastohydrodynamic coupling solution,the Reynolds equation is discretized by the difference method based on the conservation of mass and flow,and the over relaxation iterative solution is carried out.The top foil is established by the Kirchhoff thin plate model,and solved by finite element method.Taking the single-pad GFB and three-pad insertion GFB as examples,the solution and analysis are carried out.The results show that:compared with eccentricity and attitude angle obtained in literature[2],the maximum errors are 6.60%and 3.76%respectively,and the error of eccentricity decreases significantly with the increase of external load;compared with rigid surface bearings,the attitude angle of flexible surface bearings is more sensitive to the change of eccentricity.
作者 邓志凯 程文杰 曹广东 肖玲 李明 DENG Zhikai;CHENG Wenjie;CAO Guangdong;XIAO Ling;LI Ming(College of Science, Xi′an University of Science and Technology, Xi′an 710054,China)
出处 《轴承》 北大核心 2021年第9期20-28,共9页 Bearing
基金 国家自然科学基金项目(51705413,11972282) 陕西省自然科学基金项目(2020JM-531)。
关键词 滑动轴承 气体动压轴承 差分法 有限元法 静态性能 sliding bearing aerodynamic bearing difference method finite element method static characteristic
  • 相关文献

参考文献1

二级参考文献18

  • 1Agrawal G L. Foil air/gas bearing technology:an overview [R]. ASME Paper 97-GT-347,1997.
  • 2Kim D,Creary A,Chang S S,et al. Mesoscale foil gas bear ings for palm-sized turbomachinery: design, manufaeturing,and modeling[J]. Journal of Engineering for Gas Tur- bines Power, 2009,131 (4) : 042502( 10 pages).
  • 3Feng K, Kaneko S. Analytical model of bump type foil bearings using a link spring structure and a finite-element shell model[J]. ASME Journal of Tribology, 2010, 132 (2) :021706(11 pages).
  • 4Blok H, van Rossum J J'. The foil bearing:a new departure in hydrodynamic lubrication[J]. Lubrication Engineering, 1953,9(6) :316-320.
  • 5Walowit J A,Anno J N. Modern developments in lubrica- tion mechanics[M]. London: Applied Science Publishers Limited, 1975.
  • 6Heshmat H, Walowit J A, Pinkus O. Analysis of gas-lubri cated foil journal bearings[J]. ASME Journal of Lubrica- tion Technology,1983,105(4) :647 -655.
  • 7Heshmat H,Walowit J A,Pinkus O. Analysis of gas-lubri- cated complaint thrust bearings[J]. ASME Journal of Lu- brication Technology, 1983,105 (4) : 638-646.
  • 8Peng Z C,Khonsari M M. Hydrodynamic analysis of com- pliant foil bearings with compressible air flow[J]. Transac- tions of the ASME,2004,126(3):542-546.
  • 9Peng Z C,Khonsari M M. On the limiting load-carrying ca- pacity of foil bearings[J]. ASME Journal of Tribology, 2004,126(4):817-818.
  • 10Peng Z C,Khonsari M M. A thermohydrodynamic analysis of foil journal bearings[J]. Transactions of the ASME, 2006,128 (3) : 534-541.

共引文献9

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部