摘要
建立一类基于接种疫苗引发的继发性免疫失败的麻疹传染病模型.先利用下一代矩阵法得到该模型的基本再生数R_(0),并给出其生物学意义;再通过构造合适的Lyapunov函数,证明R_(0)是一个阈值参数:当R_(0)≤1时,无病平衡点是全局渐近稳定的;当R_(0)>1时,无病平衡点是不稳定的,传染病平衡点是全局渐近稳定的.
We established a class of measles epidemic model based on secondary vaccine failure induced by vaccination.By using the next generation matrix method,we first obtained the basic reproduction number R 0 of the model and gave its biological meaning,and then proved that R 0 was a sharp threshold parameter by constructing an appropriate Laypunov function.When R_(0)≤1,the disease-free equilibrium is globally asymptotically stable;when R_(0)>1,the disease-free equilibrium is unstable and the endemic equilibrium is globally asymptotically stable.
作者
王晗
李辉来
李文轩
WANG Han;LI Huilai;LI Wenxuan(College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第5期1003-1008,共6页
Journal of Jilin University:Science Edition
基金
吉林省教育厅科学技术研究规划项目(批准号:JJKH20211033KJ)
吉林大学2020年研究生创新研究计划项目(批准号:101832020CX071)
关键词
麻疹模型
继发性免疫失败
基本再生数
全局稳定性
measles model
secondary vaccine failure
basic reproduction number
global stability