期刊文献+

一种新型的自适应多核学习算法

A Novel Self-adaptive Multiple Kernel Learning Algorithm
下载PDF
导出
摘要 针对样本基数较大、维数较高、特征较复杂的数据集训练问题,将支持向量机与蚁群优化算法相融合,提出一种自适应多核学习算法.利用吸引子传播聚类算法自适应地发现相似特征,并据此利用蚁群算法自适应地选择核函数参数,从而快速选择最优核函数.通过UCI数据集的5组数据实验表明,该算法相比于传统的支持向量机分类准确率和F 1值更高,验证了该算法的有效性和可行性. Aiming at the problem of the training data set with large samples,high dimension,and complex features,a self-adaptive multiple kernel learning algorithm was proposed by integrating support vector machine with ant colony optimization algorithm.The affinity propagation clustering algorithm was used to find the similar features adaptively,and then the parameters of the kernel function were selected adaptively by ant colony algorithm,so as to select the optimal kernel function quikly.Experimental results of five groups of UCI data sets show that the proposed algorithm has higher classification accuracy and F 1 value than the traditional support vector machine,which verifies the effectiveness and feasibility of the proposed algorithm.
作者 聂逯松 常方圆 常学智 刘畅 金有为 刘国晟 付加胜 韩霄松 NIE Lusong;CHANG Fangyuan;CHANG Xuezhi;LIU Chang;JIN Youwei;LIU Guosheng;FU Jiasheng;HAN Xiaosong(Jilin University Communist Youth League Committee,Jilin University,Changchun 130012,China;College of Nursing,Jilin University,Changchun 130012,China;College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;College of Medical Information,Changchun University of Chinese Medicine,Changchun 130117,China;Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry,Changchun 130012,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China;College of Software,Jilin University,Changchun 130012,China;CNPC Engineering Technology R&D Company Limited,Beijing 102206,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2021年第5期1212-1218,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61972174) 吉林省科技发展计划项目(批准号:20190302107GX) 吉林省产业技术专项研究与开发项目(批准号:2019C053-7) 吉林省教育厅“十三五”产业化项目(批准号:JJKH20200871KJ,JJKH20200870KJ) 广东省应用基础研究重点项目(批准号:2018KZDXM076) 广东省重点学科建设计划项目(批准号:2016GDYSZDXK036).
关键词 多核学习 支持向量机 蚁群算法 聚类算法 multiple kernel learning support vector machine ant colony algorithm,clustering algorithm
  • 相关文献

参考文献1

二级参考文献7

  • 1Farag A, Ayman E B , Gimel F G , et al. Detection and recognition of lung nodules in spiral CT images using deformable templates and Bayesian post-classi- fication[C]//International Conference on Image Pro- cessing(ICIP 2004), Singapore, 2004.
  • 2Kenji S, Li F, Sone S, et al. Computer-aided diag- nostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificialneural network[J]. IEEE Transactions on Medical Imaging, 2005, 24 (9) : 1138-1150.
  • 3Suzuki K, Armato S G, Li F, et al. Massive train- ing artificial neural network (MTANN) for reduc- tion of false positives in computerized detection of lung nodules in low-dose computed tomography[J]. Med Phys, 2003, 30(6): 1602-1617.
  • 4Wang Z, Chen S C. New least squares support vec- tor machines based on matrix patterns[J]. Neural Processing Letters, 2007, 26(1): 41-56.
  • 5Wang Q Z,Kang W W, Wu C M, et al. Computer- aided detection of lung nodules by SVM based on 3D matrix patterns[J]. Clinical Imaging, 2013, 37(1) 62-69.
  • 6孙申申,任会之,康雁,赵宏.基于遗传算法和支持向量机的肺结节检测[J].系统仿真学报,2011,23(3):497-501. 被引量:7
  • 7张婧,李彬,田联房,陈萍,王立非.结合规则和SVM方法的肺结节识别[J].华南理工大学学报(自然科学版),2011,39(2):125-129. 被引量:9

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部