摘要
针对样本基数较大、维数较高、特征较复杂的数据集训练问题,将支持向量机与蚁群优化算法相融合,提出一种自适应多核学习算法.利用吸引子传播聚类算法自适应地发现相似特征,并据此利用蚁群算法自适应地选择核函数参数,从而快速选择最优核函数.通过UCI数据集的5组数据实验表明,该算法相比于传统的支持向量机分类准确率和F 1值更高,验证了该算法的有效性和可行性.
Aiming at the problem of the training data set with large samples,high dimension,and complex features,a self-adaptive multiple kernel learning algorithm was proposed by integrating support vector machine with ant colony optimization algorithm.The affinity propagation clustering algorithm was used to find the similar features adaptively,and then the parameters of the kernel function were selected adaptively by ant colony algorithm,so as to select the optimal kernel function quikly.Experimental results of five groups of UCI data sets show that the proposed algorithm has higher classification accuracy and F 1 value than the traditional support vector machine,which verifies the effectiveness and feasibility of the proposed algorithm.
作者
聂逯松
常方圆
常学智
刘畅
金有为
刘国晟
付加胜
韩霄松
NIE Lusong;CHANG Fangyuan;CHANG Xuezhi;LIU Chang;JIN Youwei;LIU Guosheng;FU Jiasheng;HAN Xiaosong(Jilin University Communist Youth League Committee,Jilin University,Changchun 130012,China;College of Nursing,Jilin University,Changchun 130012,China;College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;College of Medical Information,Changchun University of Chinese Medicine,Changchun 130117,China;Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry,Changchun 130012,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China;College of Software,Jilin University,Changchun 130012,China;CNPC Engineering Technology R&D Company Limited,Beijing 102206,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第5期1212-1218,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61972174)
吉林省科技发展计划项目(批准号:20190302107GX)
吉林省产业技术专项研究与开发项目(批准号:2019C053-7)
吉林省教育厅“十三五”产业化项目(批准号:JJKH20200871KJ,JJKH20200870KJ)
广东省应用基础研究重点项目(批准号:2018KZDXM076)
广东省重点学科建设计划项目(批准号:2016GDYSZDXK036).
关键词
多核学习
支持向量机
蚁群算法
聚类算法
multiple kernel learning
support vector machine
ant colony algorithm,clustering algorithm