期刊文献+

时间尺度上约束Hamilton系统的Noether对称性和守恒量

Noether Symmetries and Conserved Quantities ofConstrained Hamiltonian Systems on Time Scales
下载PDF
导出
摘要 研究时间尺度上相空间中非保守奇异系统的Noether对称性和守恒量.首先,将奇异性导致的内在约束按外在非完整约束等效处理,利用时间尺度上Δ导数下的Hamilton原理得到约束Hamilton系统的正则方程;其次,引进时间不变的特殊无限小变换,得到系统Hamilton作用量在该变换下的Noether对称性的判据和定理;最后,举例说明该方法和结果的有效性.结果表明,时间尺度上约束Hamilton系统的正则方程结构属性依旧保持,系统的奇异性使Noether对称性不再直接导致Noether类型的守恒量,还需构造一定的规范函数使Noether对称性满足结构方程. The author studied the Noether symmetries and conserved quantities of non-conservative singular systems in phase space on time scales.Firstly,the internal constraints caused by singularity were treated as external non-holonomic constraints,and the canonical equations of constrained Hamiltonian systems were obtained by using Hamilton principle underΔderivative on time scale.Secondly,the special infinitesimal transformation with time invariance was introduced,and the criterion and theorem of Noether symmetry were obtained according to the invariance of Hamilton action.Finally,the effectiveness of the method and results was illustrated by an example.The results show that the structural properties of canonical equations of constrained Hamiltonian systems on time scale are still maintained,the singularity of the system makes the Noether symmetry no longer directly lead to the Noether-type conserved quantity,and it is necessary to construct a certain gauge function to make the Noether symmetry satisfy the structural equation.
作者 郑明亮 ZHENG Mingliang(School of Mechanical and Electrical Engineering,Taihu University of Wuxi,Wuxi 214064,Jiangsu Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2021年第5期1267-1271,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:21676031) 江苏省高校自然科学基金(批准号:20KJD460001).
关键词 时间尺度 约束HAMILTON系统 NOETHER对称 守恒量 time scale constrained Hamiltonian system Noether symmetry conserved quantity
  • 相关文献

参考文献7

二级参考文献43

  • 1FU JingLi1,CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Mechanics,Shanghai University,Shanghai 200072,China,3 Faculty of Mechanical-Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1687-1698. 被引量:9
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J].力学进展,1993,23(3):360-372. 被引量:81
  • 4葛伟宽,张毅.变质量完整力学系统的Hojman守恒量[J].力学季刊,2004,25(4):573-576. 被引量:2
  • 5BOHNER M,PETERSON A.Dynamic equations on time scales:an introduction with applications[M].Boston:Birkhauser,2001.
  • 6BOHNER M,PETERSON A.Advances in dynamic equations on time scales[M].Boston:Birkhauser52003.
  • 7AGARWAL R,BOHNER M,O'REGAN D,et al.Dynamic equations on time scales:a survey[J].Journal of Computational and Applied Mathematics,2002,141(1):1-26.
  • 8BOHNER M,HUDSON T.Euler-type boundary value problems in quantum calculus[J].International Journal of Applied Mathematics & Statistics,2007,9(J07):19-23.
  • 9GRAVAGNE I A, DAVIS J M,DACUNHA J J,et al.Bandwidth reduction for controller area networks using adaptive sampling[C]// Proceedings of the 2004 IEEE International Conference on Robotics & Automation,New Orleans,LA,April 2004:5250-5255.
  • 10MARKS R J,GRAVAGNE I A,DAVIS J M,et al.Nonregressivity in switched linear circuits and mechanical systems[J].Mathematical and Computer Modelling,2006,43(11-12):1383-1392.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部