摘要
本文研究一类涉及临界非线性的Kirchhoff型方程:-(a+b∫_(Ω)|▽u|^(2)dx)△u=λu+g(x)|u|^(x*-2)u,u∈H0^(1)(Ω)其中Ω是RN(N≥3)中光滑有界区域,参数a,b,λ>0,g(x)是一变号函数,且满足g∈L^(∞)(Ω)与集合{x∈Ω:g(x)>0}具有正测度.当N=3时,λ在λ1a的右侧小邻域得到方程的正基态解。对于N=4时,g在不同条件下,得到了方程正解的存在与不存在性.对于N≥5时,通过变分方法,得到方程的正基态解.
In this paper,we investigate a class of Kirchhoff type problem involving a critical nonlinearity-(a+b∫_(Ω)|▽u|^(2)dx)△u=λu+g(x)|u|^(x*-2)u,u∈H0^(1)(Ω)whereΩis a smooth bounded domain in RN(N≥3),a,b,λ>0 and g(x)is a sign-changing potential,g∈L^(∞)(Ω)with the set{x∈Ω:g(x)>0}of positive measure.For N=3,we obtain a positive ground state solution to the problem withλin a small right neighborhood ofλ1 a.For N=4,under some assumptions on g,we get the existence and non-existence of the positive solutions.For N≥5,by using the variational method,we obtain that the equation has a ground state solution.
作者
杨柳
王立雄
Yang Liu;Wang Lixiong(College of Mathematics and Statistics,Hengyang Normal University,Hengyang 421008,Hunan,China;2.School of Mathematics and Statistics,Central South University,Changsha 410083,Hunan,China)
出处
《数学理论与应用》
2021年第1期71-90,共20页
Mathematical Theory and Applications
基金
中南大学研究生科研创新项目(1053320211512)资助。
关键词
基尔霍夫方程
NEHARI流形
基态解
临界指数
变分方法
Kirchhoff type problem
Nehari manifold
Ground state solution
Critical exponent
Variational method