期刊文献+

氢燃料电池电催化剂研究进展 被引量:6

Recent advances of electrocatalysts in hydrogen fuel cells
下载PDF
导出
摘要 目前铂(Pt)及其合金仍是氢燃料电池首选催化剂,但是Pt高价格、低储量及循环稳定性差等缺点严重阻碍了氢燃料电池商业化,因此发展低成本、高性能的新型非Pt催化剂和低Pt催化剂是实现氢燃料电池商业化的关键。本文围绕燃料电池催化开发及使用过程中存在的成本、稳定性和毒化问题,回顾了近年来阴离子交换膜燃料电池和质子交换膜燃料电池催化剂分别在提高阳极催化剂活性、降低阴极催化剂成本领域的最新研究进展,包括催化剂的组成、结构以及颗粒尺寸等对催化活性、稳定性的影响。最后针对燃料电池催化剂存在的问题,指出未来应基于原位观测和表征技术加强对碱性氢氧化机理的研究,同时开发高温制备小尺寸高有序度的有序铂合金阴极催化剂的方法是未来的研究重点。 Currently,the carbon supported Pt and Pt alloy nanoparticles(NPs)are still the primary electrocatalysts for hydrogen fuel cells.However,the large-scale commercialization of hydrogen fuel cells is impeded due to the poor durability,high cost and low reserves of Pt.Hence,the development of low cost,high-performance non-Pt or low-Pt electrocatalysts is a key for the commercialization of hydrogen fuel cells.With the focus on the cost,durability and poisoning of electrocatalysts,this paper reviews the latest research progress in improving the activity of anode catalysts and reducing the cost of cathode catalysts.Moreover,this paper also summarizes the influence of the composition,structure and size of nanoparticles on the activity and durability of the catalysts.Finally,we provide guidance for the development of fuel cell catalysts,that is,the application of in-situ characterization techniques to unravel the hydroxide(HOR)mechanism in alkaline medium,and the development of facile and efficient strategies to fabricate the small size and highly order intermetallic Pt alloys catalysts.
作者 王敏键 陈四国 邵敏华 魏子栋 WANG Minjian;CHEN Siguo;SHAO Minhua;WEI Zidong(School of Chemistry and Chemical Engineering,Chongqing University,Chongqing 401331,China;Department of Chemical and Biological Engineering,The Hong Kong University of Science and Technology,HongKong 999077,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2021年第9期4948-4961,共14页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21978028,21776023,21761162015)。
关键词 燃料电池 阴离子交换膜 质子交换膜 低Pt催化剂 非Pt催化剂 fuel cell anion exchange membrane proton exchange membrane low-Pt catalyst non-Pt catalyst
  • 相关文献

参考文献4

二级参考文献28

  • 1B. C. H. Steele, A. Heinzel, Nature, 2001, 414, 345-352.
  • 2J. Xie, D. L. Wood, K. L. More, P. Atanassov, R. L. Borup, J. Electrochem. Soc., 2005, 152, A1011-A1020.
  • 3T. J. Schmidt, V. Stamenkovic, N. M. Markovic, P. N. Ross, Electrochim. Acta, 2003, 48, 3823-3828.
  • 4Y. P. Xiao, W. J. Jiang, S. Wan, X. Zhang, J. S. Hu, Z. D. Wei, L. J. Wan, J. Mater. Chem. A, 2013, 1, 7463-7468.
  • 5D. J. Ham, C. Pak, G. H. Bae, S. Han, K. Kwon, S. A. Jin, H. Chang, S. H. Choi, J. S. Lee, Chem. Commun., 2011, 47, 5792-5794.
  • 6J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Nat. Mater., 2010, 9, 904-907.
  • 7R. Bashyam, P. Zelenay, Nature, 2006, 443, 63-66.
  • 8W. Ding, Z. D. Wei, S. G. Chen, X. Q. Qi, T. Yang, J. S. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed., 2013, 52, 11755-11759.
  • 9M. R. Xia, W. Ding, K. Xiong, L. Li, X. Q. Qi, S. G. Chen, B. S. Hu, Z. D. Wei, J. Phys. Chem. C, 2013, 117, 10581-10588.
  • 10H. Yin, C. Z. Zhang, F. Liu, Y. L. Hou, Adv. Funct. Mater., 2014, 24, 2930-2937.

共引文献43

同被引文献72

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部