摘要
为解决小位移下传统节点阻尼器不能充分发挥其耗能能力问题,开发出了基于杠杆原理的新型放大式阻尼器,以实现小位移高耗能。本文首先介绍了阻尼器基本构造及其工作原理,给出了阻尼器的力学模型,并基于数值模拟结果探讨放大式阻尼器的效果;再基于混凝土框架结构的静力弹塑性分析,主要对比有控结构中布置放大式阻尼器和无放大式阻尼器时的能力曲线、性能点、层间位移、层间位移角及塑性铰分布。研究结果表明:与无放大式阻尼器对比,布置放大式阻尼器的承载力增幅在10.0%左右;性能点对应剪力和位移减幅分别提高2.3%~3.1%和10.4%~12.3%;最大层间位移及薄弱层层间位移角减幅分别提高12.7%~15.0%和9.5%~11.2%。研究结果证明放大式阻尼器相比无放大式阻尼器效果更为显著。
In order to solve the problem that traditional joint dampers can not fully exert their energy consumption under small displacement,a new type of amplified damper based on bar principle is developed to realize small displacement and high energy consumption.the basic structure and working principle of damper is firstly introduced,effect of amplified damper based on the numerical simulation results is discussed,the mechanical model of damper is given,and the capability curve,performance points,inter-story displacement,shift angle and plastic hinge distribution and inter-story position of amplified damper and non-amplified damper in controlled structure based on static elastic-plastic analysis of concrete frame structure are then compared..Results show that compared with the non-amplified damper,the bearing capacity increases by about 10.0%,the shear force and displacement decreases by 2.3%~3.1%and 10.4%~12.3%at the performance points,the maximum interlayer displacement and the displacement angle decreases by 12.7%~15.0%and 9.5%~11.2%at the weak interlayer,which proves that the amplified damper is more effective than the non-amplified damper.
作者
李伟豪
叶茂
章武亮
袁金秀
Li Weihao;Ye Mao;Zhang Wuliang;Yuan Jinxiu(Guangzhou University-Danjiang University Joint Research Center for Engineering Structure Disaster and Control,510006,Guangzhou,China;Hebei Transportation Technical College,Department of Civil Engineering,050091,Shijiazhuang,China)
出处
《应用力学学报》
CAS
CSCD
北大核心
2021年第4期1596-1603,共8页
Chinese Journal of Applied Mechanics
基金
中国工程院战略咨询重点项目(2021-XZ-37)
国家自然科学基金课题资助(51925802)
广州市高校科研项目(1201610505)。
关键词
放大式阻尼器
力学性能
杠杆原理
混凝土框架
静力弹塑性分析
amplified damper
mechanical properties
lever principle
concrete frame
static elasto-plastic analysis