期刊文献+

基于主成分分析协同随机森林算法的热连轧带钢宽度预测 被引量:20

Prediction of Rough Rolling Width Based on Principal Component Analysis Collaborated with Random Forest Algorithm
下载PDF
导出
摘要 为提高热连轧粗轧带钢生产过程中换钢种、换规格及换辊后的首块带钢宽度设定模型精度,本文提出一种基于主成分分析协同随机森林(PCA-RF)算法的宽度预测模型.采用主成分分析法对数据样本合理分析,通过计算特征值、主成分贡献度及累计贡献度进行特征选择.在PCA筛选的变量数据集上训练最佳随机森林宽度预测模型.同时,使用支持向量机回归(SVR)、K-最近邻(KNN)模型进行对比验证.通过实际应用表明,PCA-RF各道次宽度模型R-squared值控制在99.9%~1,且96%以上样本点预测误差在-5~5 mm,从而证明该模型实现了换钢种、换规格及换辊后的首块钢宽度的高精度预测. To improve the accuracy of the predicted width of the first piece of steel after changing the steel type,the steel specification and the roll in the process of hot continuous rough rolling strip production,a new width prediction model based on the principal component analysis collaborated with random forest(PCA-RF)algorithm is proposed in this work.The PCA method is used to analyze the reasonability of data samples and the feature selection is carried out by calculating the eigenvalue,and principal component and cumulative contribution degrees.The best RF model is trained on variant dataset selected from the PCA.At the same time,support vector machine regression(SVR)and K-nearest neighbor(KNN)models are used for comparison and verification.The practical applications show that the R-squared value from the each pass width predicted by the PCA-RF model is controlled within the range of 0.999~1,and the prediction error of more than 96%samples is-5~5 mm,which proves that the model can predict the steel width with a high precision.
作者 丁敬国 郭锦华 DING Jing-guo;GUO Jin-hua(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期1268-1274,1289,共8页 Journal of Northeastern University(Natural Science)
基金 国家重点研发计划项目(2018YFB1308705,2017YFB0304100).
关键词 热连轧粗轧 主成分分析 特征选择 宽度预测 随机森林算法 hot continuous rough rolling principal component analysis(PCA) feature selection width prediction random forest(RF) algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1熊尚武,刘相华,王国栋,张强,韩力,赵晓林,陈铁.粗轧机组调宽轧制技术与减少切损的方法[J].钢铁,1994,29(12):75-78. 被引量:17
  • 2Nicklaus F P,Dieter L,Gunter S,et al.Application of neural networks in rolling mill automation[J].Iron and Steel Engineer,1995,72(2):33-36.
  • 3Ishii T,Wada S,Miyokawa M,et al.Recent technology in hot strip mill[C]//Proceedings of the 7th International Conference on Steel Rolling.Tokyo:The Iron and Steel Institute of Japan,1998:711-716.
  • 4Draeger A,Engell S,Ranke H.Model predictive control using neural networks[J].IEEE Control Systems,1995,15(5):61-66.
  • 5Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Piscataway:IEEE Service Center,1995:39-43.
  • 6Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc of the 1995 IEEE Int Conf on Neural Networks.Perth,1995:1942-1948.
  • 7Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE Int Conf of Evolutionary Computation.Anchorage,1998:69-73.
  • 8Burel G.Blind separation of sources:a nonlinear neural algorithm[J].Neural Network,1992,5(6):937-947.
  • 9Tugnait J K.Adaptive blind separation of convolutive mixtures of independent linear signals[J].Signal Processing,1999,73(7):139-152.
  • 10ZHAO De-wen FANG Qi LI Can-ming LIU Xiang-hua WANG Guo-dong.Derivation of Plastic Specific Work Rate for Equal Area Yield Criterion and Its Application to Rolling[J].Journal of Iron and Steel Research International,2010,17(4):34-38. 被引量:4

共引文献43

同被引文献241

引证文献20

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部