期刊文献+

基于改进遗传算法的秸秆还田机刀片功耗优化 被引量:4

Blade Power Consumption Optimization of Straw Crushing Machines Using the Improved Genetic Algorithm
下载PDF
导出
摘要 为降低秸秆还田机的功耗,以秸秆还田机的刀片为研究对象,对刀片的结构和运动参数进行优化.首先通过分析刀片受力情况建立刀片功耗数学模型,并通过田间试验验证模型的正确性;其次对遗传算法进行改进,使用权威测试函数验证改进后算法的可行性与优越性;最后使用改进遗传算法对刀片功耗数学模型进行优化,并利用ANSYS Workbench平台对优化前后的刀片进行结构静力学分析.优化结果表明刀片的功耗值由优化前的19.3 kW下降到18.06 kW,降低了6.4%,结构静力学分析结果表明刀片优化后结构的合理性和可行性. To reduce the power consumption of straw crushing machines,the blade of straw crushing machines was taken as the research object to optimize its structure and motion parameters.A mathematical model of blade power consumption was established by analyzing the blade force,and the correctness of the model was verified by field experiments.An advanced genetic algorithm was proposed,and its feasibility and superiority were verified by using standard test functions.The mathematical model was optimized by using the advanced genetic algorithm,and the structural static analysis of the blades before and after optimization was carried out by using the ANSYS Workbench platform.The optimization results showed that the power consumption is reduced by 6.4%compared with that before optimization,from 19.3 kW to 18.06 kW.The results of structural static analysis showed that the optimized structure is reasonable and feasible.
作者 叶翠丽 王娜 庞硕 闫航 YE Cui-li;WANG Na;PANG Shuo;YAN Hang(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期1290-1298,共9页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N2003017) 中国博士后基金面上资助项目(2018M631800) 国家自然科学基金资助项目(52005085).
关键词 秸秆还田机 刀片功耗 数学模型 改进遗传算法 刀片优化 straw crushing machine blade power consumption mathematical model advanced genetic algorithm blade optimization
  • 相关文献

参考文献3

二级参考文献30

共引文献13

同被引文献42

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部