期刊文献+

基于神经网络的机翼结构载荷模型建立方法 被引量:3

A Method of Establishing Wing Structural Load Model Based on Neural Network
下载PDF
导出
摘要 建立以飞行参数为变量的机翼结构载荷模型是飞行安全监控及飞机疲劳寿命估算的重要技术基础。首先将机翼燃油质量对其结构载荷的影响分离,在此基础上依据飞机结构载荷与飞行参数间的相关性,通过相关分析结合主成分分析的方法确定了低维数且互不相关的建模参数,并采用高斯-伯努利受限玻尔兹曼机预训练的BP神经网络方法实现了模型建立。以飞机跨音速俯仰机动为例,建立了机翼某测载剖面剪力模型,模型验证结果表明,预训练可有效降低模型初始误差,提升建模效率及精度。 The establishment of a wing structural load model with flight parameters as variables is an important technical basis for flight safety monitoring and aircraft fatigue life estimation.Firstly,the influence of wing fuel quality on its structural load is separated.On the basis of this and in accordance with the correlation between aircraft structural load and flight parameters,and the low-dimensional and the uncorrelated modeling parameters determined through correlation analysis combined with principal component analysis,a model is established by the BP neural network method pre-trained by Gauss-Bernoulli restricted Boltzmann machine.Taking the aircraft s transonic pitch maneuver for example,a shear force model of a certain measured load profile of the wing is established.The model verification results show that the pre-training can effectively reduce the initial error of model,and improve the modeling efficiency and accuracy.
作者 唐宁 TANG Ning(Chinese Flight Test Establishment,Xi’an 710089,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2021年第4期41-46,共6页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 机翼结构载荷 机翼燃油 神经网络 主成分分析 受限玻尔兹曼机 wing structure load wing fuel neural networks principal component analysis restricted Boltzmann machine
  • 相关文献

参考文献4

二级参考文献55

  • 1孙建华,蘧时红.飞行载荷参数识别方法研究[J].航空学报,1994,15(1):109-112. 被引量:3
  • 2刘文埏.结构可靠性设计手册[M].北京:国防工业出版社,2008.
  • 3叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 4Kaneko H, Furukawa T. Operational Loads Regression Equa- tion Development for Advanced Fighter Aircraft [ C ]. 24th In- ternational Congress of the Aeronautical Sciences, 2004: 1-9.
  • 5Ravindra V, Jategaonkar. Flight Vehicle System Identifica- tion:A Time Domain Methodology [ R ]. American Institute of Aeronautics and Astronautics,2006.
  • 6Haykin S. Neural Networks and Learning Machines (3rd Edition) [M]. New Jersey: Pearson Education, 2009.
  • 7Hinton G E, Sejnowski T J. Learning and relearning in Boltzmann machines[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition,Cambridge, USA, 1986.
  • 8Smolensky P. Information processing in dynamical systems: foundations of harmony theory[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, USA, 1986.
  • 9Freund Y, Haussler D. Unsupervised learning of distributions on binary vectors using two layer networks[R]. Santa Cruz: University of California, UCSC-CRL-94-25, 1994.
  • 10Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008,20(6): 1631-1649.

共引文献109

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部