期刊文献+

Universality of an improved photosynthesis prediction model based on PSO-SVM at all growth stages of tomato 被引量:2

原文传递
导出
摘要 CO_(2)concentration is an environmental factor affecting photosynthesis and consequently the yield and quality of tomatoes.In this study,a photosynthesis prediction model for the entire growth stage of tomatoes was constructed to elevate CO_(2)level on the basis of crop requirements and to evaluate the effect of CO_(2)elevation on leaf photosynthesis.The effect of CO_(2)enrichment on tomato photosynthesis was investigated using two CO_(2)enrichment treatments at the entire growth stage.A wireless sensor network-based environmental monitoring system was used for the real-time monitoring of environmental factors,and the LI-6400XT portable photosynthesis system was used to measure the net photosynthetic rate of tomato leaf.As input variables for the model,environmental factors were uniformly preprocessed using independent component analysis.Moreover,the photosynthesis prediction model for the entire growth stage was established on the basis of the support vector machine(SVM)model.Improved particle swarm optimization(PSO)was also used to search for the best parameters c and g of SVM.Furthermore,the relationship between CO_(2)concentration and photosynthetic rate under varying light intensities was predicted using the established model,which can determine CO_(2)saturation points at the various growth stages.The determination coefficients between the simulated and observed data sets for the three growth stages were 0.96,0.96,and 0.94 with the improved PSO-SVM and 0.89,0.87,and 0.86 with the original PSO-SVM.The results indicate that the improved PSO-SVM exhibits a high prediction accuracy.The study provides a basis for the precise regulation of CO_(2)enrichment in greenhouses.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期63-73,共11页 国际农业与生物工程学报(英文)
基金 the National Key Research and Development Program(Grant No.2016YFD0200602) National Natural Science Fund(Grant No.31271619).
  • 相关文献

参考文献6

二级参考文献82

共引文献225

同被引文献21

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部