期刊文献+

智能家居盆栽系统技术的研究与设计 被引量:1

Research and Design of Intelligent Home Potted Plant System Technology
下载PDF
导出
摘要 生活中人们常常会在家中摆放盆栽,但是由于忙于工作、学习等原因疏忽了对盆栽植物的培养,或者因缺乏盆栽种植的相关专业知识导致植物烂根、枯萎,针对这种生活背景设计出了一款搭载Linux系统的Exynos 4412开发板,并且拥有多种信息采集传感器,利用时间序列预测模型、深度卷积神经网络模型、消息队列遥测传输协议、云存储等技术的智能家居盆栽系统。该系统实现盆栽植物自动化科学灌溉,土壤肥沃监控,病虫害预警,从而保证盆栽植物健康茁壮的成长,具有广阔的市场空间。 In our daily life,people often neglect the cultivation of potted plants because they are busy with work and study,or the lack of professional knowledge of potted plants leads to rotten roots and withered plants.In view of this background,an Exynos 4412 develop⁃ment board with Linux system is designed,and it has a variety of information acquisition sensors Deep convolution neural network mod⁃el,message queue telemetry transmission protocol,cloud storage technology,etc.The system realizes automatic scientific irrigation of potted plants,monitoring of soil fertility and early warning of diseases and pests,so as to ensure the healthy and healthy growth of potted plants.
作者 何文祥 李社蕾 He Wenxiang;Li Shelei(Department of Information and Intelligent Engineering,Sanya University,Sanya 572000)
出处 《现代计算机》 2021年第23期167-170,共4页 Modern Computer
基金 省级大学生创新创业训练计划项目(S201913892089)。
关键词 智能家居盆栽 Exynos 4412 时间预测序列 病虫害识别 intelligent home potting exynos 4412 time prediction sequence identification of diseases and insect pests
  • 相关文献

参考文献4

二级参考文献30

  • 1陈怀亮,张弘,李有.农作物病虫害发生发展气象条件及预报方法研究综述[J].中国农业气象,2007,28(2):212-216. 被引量:81
  • 2田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 3王海光,马占鸿,王韬,蔡成静,安虎,张录达.高光谱在小麦条锈病严重度分级识别中的应用[J].光谱学与光谱分析,2007,27(9):1811-1814. 被引量:24
  • 4Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identi- fication[ J]. Transaction of the ASABE, 1993,36 ( 1 ) : 163-171.
  • 5Im C, Nishida H, Kunii T L. Recognizing plant species by leaf shapes-a case study of the Acer family [ C ]//Proceed- ings of 14th International Conference on Pattern Recogni- tion. Brisbane, IEEE. 1998,2 : 1171-1173.
  • 6Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input [ J]. Computers and Electronics in Agriculture, 2000,29(1-2) :59-72.
  • 7Soderkvist O J O. Computer Vision Classification of Leaves from Swedish Trees [ D ]. Linkoping: Linkoping Universi- ty, 2001.
  • 8Ling H, Jacobs D W. Shape classification using the inner- distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) :286-299.
  • 9Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07). 2007: 1-8.
  • 10Zhang Shah-wen, Lei Ying-ke, Dong Tian-bao, et al. La- bel propagation based supervised locality projection analy- sis for plant leaf classification [ J ]. Pattern Recognition, 2013,46 (7) : 1891-1897.

共引文献143

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部