摘要
为了解决无人机(UAV)无源定位中难以从多径干扰严重的环境中提取无人机定位信号的问题,该文提出一种基于支持向量机(SVM)的无人机定位信号分离算法,在SVM模型训练时,通过计算无人机相邻数据集之间的欧氏距离获取信息熵,为SVM映射高维空间提供模型数据。在此基础上,加入映射函数阈值软边界,使模型具有参数自适应调整能力,来适应无人机运动灵活所导致的数据差异。最后构建了观测者操作特性曲线获取无人机定位信号分离结果。仿真结果表明所提算法能够有效分离无人机定位信号与噪声,在多径干扰严重的情况下具有较高的信号分离准确率。
In order to solve the problem that it is difficult to extract the Unmanned Aerial Vehicle(UAV)positioning signal from the environment with severe multipath interference in the passive positioning of the UAV, a UAV positioning signal separation based on Support Vector Machines(SVM) algorithm is proposed.During the training of the SVM model, the information entropy is obtained by calculating the Euclidean distance between the adjacent data sets of the UAV, and the model data is provided for the SVM to map the high-dimensional space. On this basis, the soft boundary of the threshold of the mapping function is added to make the model have the ability to adjust parameters adaptively to adapt to the data difference caused by the flexible movement of the UAV. Finally, an observer operating characteristic curve is constructed to obtain the result of UAV positioning signal separation. The simulation results show that the proposed algorithm can effectively separate the UAV positioning signal and noise.
作者
李晓辉
方坤
樊韬
刘佳文
吕思婷
LI Xiaohui;FANG Kun;FAN Tao;LIU Jiawen;LU Siting(State Key Laboratory of ISN,Xidian University,Xi’an 710077,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2021年第9期2601-2607,共7页
Journal of Electronics & Information Technology
关键词
无人机定位
支持向量机
信息熵
噪声分离
Unmanned Aerial Vehicle(UAV)positioning
Support Vector Machines(SVM)
Information entropy
Noise separation