期刊文献+

一种提高手机人民币图像真伪识别率的CNN框架 被引量:1

A CNN Framework for Improving the Recognition Rate of Authenticity on Mobile Phone RMB Images
下载PDF
导出
摘要 论文为了解决手机人民币图像给人民币鉴伪任务带来的困难,构造了一个基于B-CNN的手机人民币图像鉴伪框架,该框架以带有提取手机人民币图像红色分量Lambda层的VGG16的block5的输出作为输入。将提取手机人民币红色分量的Lambda层加在VGG16网络的最前面,并用此时VGG16的block5的输出模拟双路搭建B-CNN网络。实验部分将通过两种不同的训练方法获取的论文提出的鉴伪框架和单一的VGG16、加了提取红色分量Lambda层的VGG16在手机人民币图像鉴伪识别上的方法进行了对比,实验表明在手机人民币图像上,论文提出的方法有更高的真伪识别性能。 In order to solve the difficulties brought by the mobile phone RMB image to the RMB authentication task,this paper constructs a mobile phone RMB image authentication framework based B-CNN.The frame takes as input the output of Block5 of VGG16 with Lambda layer for extracting red components.The Lambda layer extracting the red component of the mobile phone RMB is added to the front of the VGG16 network,and the output of the block5 of the VGG16 is used to simulate the two-way construction of the B-CNN network.The experimental part compares the authentication framework proposed by the papers obtained by two different training methods with the single VGG16 and the VGG16 with the red component Lambda layer on the mobile phone RMB image identification.Experiments show that on the mobile phone RMB image,the method proposed has higher recognition performance.
作者 郭素珍 任明武 GUO Suzhen;REN Mingwu(Computer Science Engineering,Nanjing University of Science and Technology,Nanjing 210094)
出处 《计算机与数字工程》 2021年第8期1666-1671,共6页 Computer & Digital Engineering
基金 国家重大科研仪器研制项目(编号:61727802)资助。
关键词 手机人民币图像 细粒度图像分类 卷积神经网络 mobile phone RMB image fine-grained image classification convolutional neural network
  • 相关文献

参考文献5

二级参考文献55

  • 1李婧,管涛,何帆.人民币跨境流通的现状及对中国经济的影响[J].管理世界,2004,20(9):45-52. 被引量:99
  • 2人民币国际化研究课题组.人民币国际化的时机、途径及其策略[J].中国金融,2006(5):12-13. 被引量:78
  • 3林宗坚,张永红.遥感与地理信息系统数据的信息量及不确定性[J].武汉大学学报(信息科学版),2006,31(7):569-572. 被引量:27
  • 4高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 5Shannon C E. A Mathematic Theory of Communication[J]. Bell System Technical Journal, 1948, 27(1):379-423.
  • 6Blacknell D, Oliver C J. Information Content of Coherent Image[J].Journal of Physics D:Applied Physics,1993, 26(9):1 364-1 370.
  • 7Razlighi Q R,Kehtarnavaz N,Nosratinia A. Computation of Image Spatial Entropy Using Quadrilateral Markov Random Field[J]. IEEE Transactions on Image Processing, 2009, 18(12):2 629-2 639.
  • 8Atkinson P M, Atkinson, I M, Sargent G M,et al. Exploring the Geostatistical Method for Estimating the Signal-to-Noise Ratio of Images[J].Photogrammetric Engineer & Remote Sensing,2007, 73(7):841-850.
  • 9Huck F O,Fales C l,Alter-Gratenberg R. Information-Theoretic Assessment of Sampled Imaging System[J].Optional Engineering, 1999,38(5):742-762.
  • 10Qin Bangyong, Hong Bo, Zhang Zhi, et al. A Generally Applicable Noise—Estimating Method for Remote Sensing Images[J]. Remote Sensing Letters,2014,5(5):481-482.

共引文献191

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部