期刊文献+

改进YOLOV4-Tiny的雨雾道路环境下的实时目标检测 被引量:12

A Fast Target Detection Algorithm in Severe Road Environment Based on Improved YOLOV4-Tiny
下载PDF
导出
摘要 为了提高恶劣道路场景下的目标检测能力,本文在YOLOV4-Tiny的基础上提出了一种快速目标检测算法。首先,本文考虑雨雾天气条件下的道路目标检测场景,将基于二次模糊的清晰度算法(ReBlur)和暗通道先验算法相结合对图像进行处理,然后将处理前后的图像用于网络的训练和测试,以克服雨雾天气造成的图像质量下降问题;另一方面,考虑道路场景中的小目标检测,本文在原网络的基础上对8倍降采样特征图进行上采样,再把得到的上采样结果与上一层的特征图拼接,以添加针对小目标的检测头。实验结果表明,改进后的网络在复杂道路场景下的检测能力显著提高,整体的平均精度均值(Mean Average Precision,mAP)也提高了4.13,同时检测速度达到了213 FPS。 In order to improve the algorithm’s detection ability in severe road scenes,a fast target detection algorithm based on YOLOV4-Tiny was proposed.First,in consideration of severe weather conditions,this paper combined the algorithm of ReBlur and the dark channel prior algorithm to process the images.On the foundation of the above results,the images before and after processing are used for network training and testing to overcome the problem of image quality degradation.On the other hand,for the detection of small targets,a detection head for small targets was added.The eight times down-sampling feature map was up-sampled for splicing with the feature map of the upper layer.The experimental results show that the improved network’s detection ability is significantly improved in complex road scenes,and the overall mean average precision(mAP)value is also increased by 4.13.Meanwhile,the detection speed reaches 213 FPS.
作者 周捷 徐光辉 朱东林 狄恩彪 ZHOU Jie;XU Guanghui;ZHU Donglin;DI Enbiao(College of Communications Engineering,Army Engineering University,Nanjing,Jiangsu 210007,China)
出处 《信号处理》 CSCD 北大核心 2021年第8期1550-1558,共9页 Journal of Signal Processing
基金 国家自然科学基金(51507188)。
关键词 深度学习 YOLOV4-Tiny 道路目标 目标检测 图像复原 deep learning YOLOV4-Tiny road targets target detection image restoration
  • 相关文献

参考文献4

二级参考文献41

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2袁珂,徐蔚鸿.基于图像清晰度评价的摄像头辅助调焦系统[J].光电工程,2006,33(1):141-144. 被引量:11
  • 3王勇,谭毅华,田金文.一种新的图像清晰度评价函数[J].武汉理工大学学报,2007,29(3):124-126. 被引量:27
  • 4杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 5Wang Z,Sheikh H R, Alan C B. Objective Video Quality As- sessment[C]//The Handbook of Video Databases.. Design and Applications. Florida : CRC Press, 2003,1041-1078.
  • 6Ng K C, Nathaniel P, Aun N, et al. Practical Issues in Pixel- based Auto-focusing for Machine Vision[C]// Proceedings of the 2001 IEEE. International Conference on Robotics & Au- tomation,Seoul,Korea May 21-26,2001:2791-2796.
  • 7Subbarao M,Tyan J K. Selection the Optimal Focus Measure for Auto-focusing and Depth from Focus[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1998,20(8):864-870.
  • 8Schlag J F, Sanderson A C, Neuman, C P, et al. Implementa- tion of Automatic Focusing Algorithms for a Computer Vision System with Camera Control[R]. Technical Report CMU-RI- TR-83 14,Carnegie Mellon University,1983.
  • 9Tenenbaum J M. Accommodation in Computer Vision[D]. Ca- lifornia : Stanford University, 1970.
  • 10Krotkov E P. Active Computer Vision by Cooperative Focus and Stereo[M]. Springer-Verlag, 1989.

共引文献224

同被引文献80

引证文献12

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部