摘要
In this paper,we report upon our recent work aimed at improving and adapting machine learning algorithms to automatically classify nanoscience images acquired by the Scanning Electron Microscope(SEM).This is done by coupling supervised and unsupervised learning approaches.We first investigate supervised learning on a ten-category data set of images and compare the performance of the different models in terms of training accuracy.Then,we reduce the dimensionality of the features through autoencoders to perform unsupervised learning on a subset of images in a selected range of scales(from 1μm to 2μm).Finally,we compare different clustering methods to uncover intrinsic structures in the images.
基金
This work has been done within the NFFA-EUROPE project and has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No.654360 NFFA-EUROPE.