期刊文献+

Radiative transfer models(RTMs)for field phenotyping inversion of rice based on UAV hyperspectral remote sensing 被引量:9

原文传递
导出
摘要 The nondestructive and rapid acquisition of rice field phenotyping information is very important for the precision management of the rice growth process.In this research,the phenotyping information LAI(leaf area index),leaf chlorophyll content(C_(ab)),canopy water content(C_(w)),and dry matter content(C_(dm))of rice was inversed based on the hyperspectral remote sensing technology of an unmanned aerial vehicle(UAV).The improved Sobol global sensitivity analysis(GSA)method was used to analyze the input parameters of the PROSAIL model in the spectral band range of 400-1100 nm,which was obtained by hyperspectral remote sensing by the UAV.The results show that C_(ab) mainly affects the spectrum on 400-780 nm band,C_(dm) on 760-1000 nm band,C_(w) on 900-1100 nm band,and LAI on the entire band.The hyperspectral data of the 400-1100 nm band of the rice canopy were acquired by using the M600 UAV remote sensing platform,and the radiance calibration was converted to the canopy emission rate.In combination with the PROSAIL model,the particle swarm optimization algorithm was used to retrieve rice phenotyping information by constructing the cost function.The results showed the following:(1)an accuracy of R^(2)=0.833 and RMSE=0.0969,where RMSE denotes root-mean-square error,was obtained for C_(ab) retrieval;R^(2)=0.816 and RMSE=0.1012 for LAI inversion;R^(2)=0.793 and RMSE=0.1084 for C_(dm);and R^(2)=0.665 and RMSE=0.1325 for C_(w).The C_(w) inversion accuracy was not particularly high.(2)The same band will be affected by multiple parameters at the same time.(3)This study adopted the rice phenotyping information inversion method to expand the rice hyperspectral information acquisition field of a UAV based on the phenotypic information retrieval accuracy using a high level of field spectral radiometric accuracy.The inversion method featured a good mechanism,high universality,and easy implementation,which can provide a reference for nondestructive and rapid inversion of rice biochemical parameters using UAV hyperspectral remote sensing.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第4期150-157,共8页 国际农业与生物工程学报(英文)
基金 support of the National Key Research and Development Plan of China(Grant No.2016YFD020060307) Key Project of Education Department of Liaoning province(LSNZD201605).
  • 相关文献

参考文献7

二级参考文献60

  • 1张维理,田哲旭,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87. 被引量:635
  • 2刘庆生,刘高焕,储晓雷.水稻、大豆与芦苇农田冠层光谱特征研究——以辽河三角洲为例[J].中国生态农业学报,2006,14(2):66-69. 被引量:5
  • 3Stone M L, Soile J B, Raun W R, et al. Use of spectral radi- ance for correcting in-season fertilizer nitrogen deficiencies in winter wheat [ J ] . Transactions of ASAE, 1996, 39 ( 5 ) : 1623-1631.
  • 4Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen statue in wheat crops using nor- malized difference vegetation indices and partial least squares regression[ J ] . Remote Sensing Environment, 2003,86 ( 4 ) : 542-553.
  • 5Smith M L,Martin M E,Plourde L,et al. Analysis of hyper- spectral data for estimation of temperate forest canopy nitro- gen concentration : comparison between an airborne ( AVITI- S) and a spaceborne ( Hyperion ) sensor [ J ]. IEEE Transac- tions on Geoscience and Remote Sensing, 2003, 41: 1332-1337.
  • 6Chanseok R, Masahiko S, Mikio U. Multivariate analysis of nitrogen content for rice at the heading stage using reflec- tance of airborne hyperspectral remote sensing [ J ] . Field Crops Research ,2011,122( 3 ) :214-224.
  • 7Martens H. Reliable and relevant modeling of real world data:a personal account of the development of PLS regression [ J]. Chemometrics and Intelligent Laboratory Systems,2001, 58(2) :85-95.
  • 8Wold S, Sjostrom M, Eriksson L. PLS-regression : a basic tool of chemometrics [ J ]. Chemometrics and Intelligent Laboratory Systems ,2001,58 (2) : 109-130.
  • 9Alchanatis V, Schmilovitch Z, Meron M. In-field assessment of single leaf nitrogen status by spectral reflectance measure- ments [ J ]. Precision Agriculture, 2005,6 ( 1 ) : 25-39.
  • 10Bonfil D J, Karnieli A, Raz M, et al. Rapid assessing of water and nitrogen status in wheat flag leaves [ J ]. Journal of Food Agriculture and Environment, 2005,3 (2) : 148-153.

共引文献108

同被引文献152

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部