期刊文献+

MIL-101Cr-F/Cl用于N2O的捕集研究

Study on the capture of N2O by MIL-101Cr-F/Cl
下载PDF
导出
摘要 氧化亚氮(N2O)是仅次于CO_(2)和CH4的第三大温室气体,对其捕集具有资源回收和减排温室气体的双重价值。本文通过添加氢氟酸和盐酸合成了末端具有不同阴离子的MIL-101Cr材料:MIL-101(Cr)-F和MIL-101(Cr)-Cl,通过XRD、BET、SEM等对样品进行了表征,测试并分析了两种样品对N2O和N2的吸附性能,进行了选择性和吸附热的计算以及混合气体的穿透模拟。研究结果表明,MIL-101(Cr)-Cl拥有目前最高的N2O吸附容量(6.43 mmol/g,298 K)和N2O/N2选择性(267),混合气体(N2O/N2=0.1%/99.9%)穿透模拟结果显示MIL-101(Cr)-Cl具有更加优异的微量N2O捕获能力。 Nitrous oxide(N2O)is the third largest greenhouse gas after CO_(2) and CH4,and its capture has the dual value of resource recovery and greenhouse gas emission reduction.In this paper,MIL-101(Cr)with different anion terminals were synthesized by adding hydrofluoric acid and hydrochloric acid separately,named MIL-101(Cr)-F and MIL-101(Cr)-Cl,the synthesized samples were characterized by XRD,BET and SEM,et al.Single component adsorption isotherms of N2O and N2 were tested,and the selectivity of N2O/N2 and corresponding adsorption heat of gases were also calculated.Additionally,the simulation of mixture(N2O/N2=0.1%/99.9%)breakthrough were carried out.As the result,MIL-101(Cr)-Cl with the highest N2O adsorption capacity(6.43 mmol/g,298 K)and N2O/N2 selectivity(267)were reported.Furthermore,the simulation result confirmed that MIL-101(Cr)-Cl has great potential to capture trace amount of N2O.
作者 李媛 张飞飞 王丽 杨江峰 李立博 李晋平 LI Yuan;ZHANG Feifei;WANG Li;YANG Jiangfeng;LI Libo;LI Jinping(College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization,Taiyuan 030024,Shanxi,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2021年第9期4759-4767,共9页 CIESC Journal
基金 国家自然科学基金项目(U20B6004)。
关键词 氧化亚氮 氮气 MIL-101Cr 阴离子 吸附分离 nitrous oxide nitrogen MIL-101Cr anion adsorption and separation
  • 相关文献

参考文献4

二级参考文献56

  • 1聂李红,徐绍平,苏艳敏,刘淑琴.低浓度煤层气提纯的研究现状[J].化工进展,2008,27(10):1505-1511. 被引量:31
  • 2宋汉成,焦文玲,李娟娟,张平.煤层气利用与输送的安全性[J].煤气与热力,2006,26(11):8-11. 被引量:9
  • 3冯明,陈力,徐承科,李春凯.中国煤层气资源与可持续发展战略[J].资源科学,2007,29(3):100-104. 被引量:52
  • 4Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295: 469-472.
  • 5Suh M P, Park H J, Prasad T K, Lim D W. Hydrogen storage in metal-organic frameworks [J]. Chemical Reviews, 2011, 112:782-835.
  • 6Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks [J]. Chemical Reviews, 2011, 112: 724-781.
  • 7Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations [J]. Chemical Reviews, 2011, 112: 869-932.
  • 8Corma A, García H, Llabrés i Xamena F X. Engineering metal organic frameworks for heterogeneous catalysis [J]. Chemical Reviews, 2010, 110 (8): 4606-4655.
  • 9Rosi N L, Kim J, Eddaoudi M, Chen B, O'Keeffe M,Yaghi O M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units [J]. Journal of the American Chemical Society, 2005, 127: 1504-1518.
  • 10Dietzel P D C, Panella B, Hirscher M, Blom R, Fjellvag H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework [J]. Chemical Communications, 2006, 9: 959-961.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部