期刊文献+

一种高精度微芯片用于微环境中细胞温度波动监测

Monitoring Cell Temperature Fluctuation in Microenvironment Chip With a High-precision Microchip
下载PDF
导出
摘要 温度是生物体中重要的参数,准确测量细胞在代谢过程中的温度波动可为更深入地探究细胞的能量产生和扩散过程提供有价值的信息,从而促进癌症和其他疾病的研究.本文基于微机电加工和微流控技术制备一批可在微环境下监测细胞代谢过程中温度波动的微芯片.微芯片由捕获细胞的C形"微坝"结构、供液体流动的"微缝"和监测温度波动的电极结构组成.可将细胞培养、温度监测在微芯片上完成.将有细胞贴壁生长的微芯片放置在37℃恒温环境中,采用恒电流法实时在线连续监测细胞在代谢过程中的温度波动.该芯片共有9个检测单元,每个单元的检测都是完全独立的,可同时检测多个结构上的细胞温度波动情况.微芯片的准确度优于0.013℃,精度为±0.014℃,响应速度约0.1 s,不同厚度Ti/Pt温度传感器的温度-电阻之间的线性拟合参数R2大于0.999.在(37±0.015)℃的恒温环境下监测细胞,发现人肺腺癌细胞系(human lung adenocarcinoma cell,H1975)在代谢过程中温度波动的极差(0.173℃)大于肝星状细胞(hepatic stellate cell,HSC)的极差(0.127℃).癌细胞H1975的平均温度(37.001℃)高于正常细胞HSC的平均温度(36.989℃).该芯片为细胞代谢监测、药物筛选等方面提供了新的研究平台. Temperature is an important parameter in organisms. Accurate measurement of cellular temperature fluctuations in the metabolic process can provide valuable information for more in-depth exploration of the energy production and diffusion process of cells, thereby promoting the research of cancer and other diseases. In this study, integrated microchips were fabricated in batch based on Micro-Electro-Mechanical System and microfluidic technology, which can monitor temperature fluctuations in a microenvironment during the process of cell metabolism. The microchip is composed of a C-shaped"micro-dam"structure, a"micro-slit"for liquid flow,and an electrode structure, which can complete cell culture and temperature monitoring on a microchip. The microchip with adherent cells was placed in a constant temperature environment of 37°C, and the constant current method was used to continuously real-time monitor the temperature changes of the cells in the metabolic process.The chip has a total of 9 detection units, each of which was completely independent and applied for detecting multiple cells’ temperature fluctuation parallelly. The accuracy and precision of the microchip were respectively better than 0.013°C and ±0.014°C with 0.1 s response speed. The linear fitting parameter R2 between temperature and resistance of Ti/Pt temperature sensors of different thicknesses was greater than 0.999. Different cells trapped by this microchip were cultured on chip and monitored under a constant temperature environment of(37±0.015)℃. The temperature fluctuation range of human lung adenocarcinoma cell(H1975)(0.173℃) during metabolism was greater than that of hepatic stellate cell(HSC)(0.127℃). The average temperature of cancer cells H1975(37.001℃) is higher than that of normal HSCs(36.989℃). In conclusion, this integrated microchip provides a tool of real-time monitoring cell temperature variation for the study of cell physiology and pathology.
作者 赵雪飞 郜晚蕾 尹加文 管轶华 金庆辉 ZHAO Xue-Fei;GAOWan-Lei;YIN Jia-Wen;GUAN Yi-Hua;JIN Qing-Hui(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China;State Key Laboratories of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China)
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2021年第8期959-965,共7页 Progress In Biochemistry and Biophysics
基金 中国国家重点研究发展计划(2017YFA0205303) 浙江省自然科学基金(LQ19F010004) 宁波市自然科学基金(2017A610229) 中国博士后科学基金(2018M642384) 宁波大学“海洋生物技术和海洋工程学科群” KC Wong Magna基金特殊研究资金资助项目。
关键词 肿瘤细胞监测 微流控芯片 细胞温度 实时监测 tumor cell monitoring microfluidic chip cellular temperature real-time moniter
  • 相关文献

参考文献1

二级参考文献10

  • 1Chu DC, Wong WK, Goodson KE, Pease RFW. Transient temperature measurements of resist heating using nanothermo- couples. J Vac Sci Technol B 2003; 21:2985-2989.
  • 2Zhang XG, Choi H, Datta A, Li XC. Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes. J Micromech Microeng 2006; 16:900-905.
  • 3Salvadori MC, Vaz AR, Teixeira FS, Cattani M, Brown IG. Thermoelectric effect in very thin film Pt/Au thermocouples. Appl Phys Lett 2006; 88:133106.
  • 4Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WGJ. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 1998; 279:1504- 1513.
  • 5Lowell BB, Spiegelman BM. Towards a molecular understand- ing of adaptive thermogenesis. Nature 2000; 404:652-660.
  • 6Tanaka E, Yamamura M, Yamakawa A, Fujise T, Nakano S. Microcalorimetric measurements of heat-production in isolated rat brown adipocytes. Biochem Int 1992; 26:873-877.
  • 7Tasaki I, Nak-ayeT. Heat generated by the dark-adapted squid retina in response to light-pulses. Science 1985; 227:654-655.
  • 8Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydro- philic fluorescent nanogel thermometer for intracellular ther- mometry. JAm Chem Soc 2009; 131:2766-2767.
  • 9Pigram W J, Fuller W, Hamilton LD. Stereochemistry of inter- calation: interaction of daunomycin with DNA. Nat New Biol 1972; 235:17-19.
  • 10Karnebogen M, Singer D, Kallerhoff M, Ringert RH. Micro- calorimetric investigations on isolated tumorous and non- tumorous tissue samples, Thermoehim Acta 1993; 229:147- 155.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部