期刊文献+

Charge transfer and excitation processes in low energy collisions of He ions with Li atoms

下载PDF
导出
摘要 Electron capture between solar wind ions and neutral species has contributed to the understanding of X-ray production from solar system bodies.The charge transfer and excitation processes in solar wind ions of He^(+)(1 s) colliding with Li(1 s^(2)2 s) atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling(QMOCC) method with impact energies of 0.003-2 keV amu-1.Comparisons of cross sections from single-and multi-configurational calculations for a selfconsistent field(SCF and MCSCF) process are carried out.Results show that the dominant reaction channels are He(1 s2 l ^(1,3) L)+Li^(+)(1 s^(2) ^(1) S).Good consistency is found among present total and state-selective charge transfer and excitation cross sections with other theoretical and experimental data in the same energy region.Due to the differences between coupling matrix elements in high-energy states,the charge transfer cross sections calculated from SCF and MCSCF split slightly as E> 0.4 keV amu-1.Weak Stueckelberg oscillations for charge transfer appear in the present work.In addition,the differences of cross sections for electron excitation to Li(ls^(2)2 p) in the singlet/triplet molecular states with He+(1 s) are much smaller than those of charge transfer processes because of the similar energy gaps from Li(ls^(2)2 p) to the ground state in singlet/triplet states in the large R region.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第8期275-284,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.11774344,11474033 and 11574326) the National Key Research and Development Program of China (Grant No.2017YFA0402300)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部