期刊文献+

Plant multiscale networks:charting plant connectivity by multi-level analysis and imaging techniques 被引量:3

原文传递
导出
摘要 In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation.Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes.Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project.In plant science,network analysis has similarly been applied to study the connectivity of plant components at the molecular,subcellular,cellular,organic,and organism levels.Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype.In this review,we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities.We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants.Finally,we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2021年第9期1392-1422,共31页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China(31530084,32000558,32000483,and31800504) the Programme of Introducing Talents of Discipline to Universities(111 project,B13007) the China Postdoctoral Science Foundation Grant(2019M660494)。
  • 相关文献

参考文献13

二级参考文献100

  • 1Shaoqing Li Daichang Yang Yingguo Zhu.Characterization and Use of Male Sterility in Hybrid Rice Breeding[J].Journal of Integrative Plant Biology,2007,49(6):791-804. 被引量:33
  • 2Arkhipov, A., Shan, Y., Das, R., Endres, N.F., Eastwood, M.P., Wemmer, D.E., Kuriyan, J., and Shaw, D.E. (2013). Architecture and membrane interactions of the EGF receptor. Cell 152:557-569.
  • 3Bacia, K., Kim, S.A., and Schwille, P. (2006). Fluorescence cross- correlation spectroscopy in living cells. Nat. Methods 3:83-89.
  • 4Baisa, G., Mayers, J.R., and Bednarek, S.Y. (2013). Budding and braking news about clathrin-mediated endocytosis. Curr. Opin. Plant Biol. 16:718-725.
  • 5Banbury, D.N., Oakley, J.D., Sessions, R.B., and Banting, G. (2003). Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J. Biol. Chem. 278: 12022-12028.
  • 6Bolte, S., and Cordelieres, F.P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224:213-232.
  • 7Borner, G.H., Sherrier, D.J., Weimar, T., Michselson, L.V., Hawkins, N.D., Macaskill, A., Napier, J.A., Beale, M.H., Lilley, K.S., and Dupree, P. (2005). Analysis of detergent-resistant membranes inArabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137:104-116.
  • 8B(icherl, C.A., van Esse, G.W., Kruis, A., Luchtenberg, J., Westphal, A.H., Aker, J., van Hoek, A., Albrecht, C., Borst, J.W., and de Vries, S.C. (2013). Visualization of BRI1 and BAKI(SERK3) membrane receptor hetero-oligomers during brassinosteroid signaling. Plant Physiol. 162:1911-1925.
  • 9Chen, J., and Irudayaraj, J. (2010). Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells. Anal. Chem. 82:6415-6421.
  • 10Cho, M.R., Knowles, D.W., Smith, B.L., Moulds, J.J., Agre, P., Mohandas, N., and Golan, D.E. (1999). Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells. Biophye. J. 76:1136-1144.

共引文献146

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部