期刊文献+

Influence of thermodynamic disfigurement on the convective heat transfer of solar greenhouse

原文传递
导出
摘要 Solar greenhouse is a typical greenhouse without any additional heating system,which has developed rapidly in Northern China.However,due to the construction quality,management methods,especially the long-term use and other factors,there are usually different degrees of thermodynamic disfigurements in the envelop enclosure of solar greenhouse.The purpose of this study was to investigate the influences of thermodynamic disfigurement on the temperature distribution and convective heat transfer of solar greenhouse.In this study,the east and west compartments of a typical solar greenhouse which is located in Yangling,China(108°4′E,34°16′N)were tested.The air temperature of each compartment was collected using temperature recorders,and the thermal infrared images of different compartment envelopes were obtained by a thermal infrared imager on a typical cloudy day.Convective heat transfer coefficients and heat flux densities of different compartment envelopes in the solar greenhouse were calculated.The results showed that the temperature difference can be displayed in the thermal infrared images of compartment envelopes,the surface temperature of the front roof was the lowest,followed by the back roof,the wall surface temperature was the highest.The minimum average surface temperature of the front roof in the eastern compartment was only 3.8℃,which was 6.8℃ and 9.2℃ lower than the average surface temperature of the back roof and back wall,respectively.The surface average temperature of thermodynamic disfigurements located at the bottom of the south side in the front roof of the eastern compartment,whose area accounted for 16.5%of the total front roof in the eastern compartment,was only 5.4℃.Compared with non-thermodynamic disfigurement,the average convective heat transfer coefficient and heat flux density of thermodynamic disfigurements in the front roof of the eastern compartment were increased by 20.3%and 110.3%,respectively.The average air temperature in the eastern compartment was 3.5℃ lower than the average air temperature in the western compartment of the solar greenhouse.Construction of brick wall at the bottom of the south side of the front roof in the solar greenhouse helped to increase the inner surface temperature of the front roof,with an average temperature rise of 6.2℃,and reduce the area of thermodynamic disfigurement,which only accounted for 2.6%of the total front roof in the western compartment.The average surface temperature of thermodynamic disfigurements mainly caused by the entry and exit door in the wall of the eastern compartment was only 9.8℃,which was lower 3.2℃ than the average temperature of non-thermodynamic disfigurement of the wall.Thermodynamic disfigurement helped to increase heat loss.The weighted average proportion of thermodynamic disfigurement in the western compartment was 2.1%,while that of thermodynamic disfigurement in the eastern compartment was 10.7%.The thermal insulation performance of the western compartment envelope in the solar greenhouse was better than that of the eastern compartment envelope.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第4期55-60,共6页 国际农业与生物工程学报(英文)
基金 This research was financially supported by Shaanxi Provincial Key Research and Development Program(Grant No.2019TSLNY01-03) National Natural Science Foundation of China(31901420) Shaanxi Science and Technology Plan Program(2019FP-023).
  • 相关文献

参考文献9

二级参考文献157

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部