期刊文献+

六方氮化硼增强低蛋白天然橡胶胶乳的性能

Properties of hexagonal boron nitride reinforced low-protein natural rubber latex
下载PDF
导出
摘要 采用机械共混法,以低蛋白天然橡胶胶乳(LPNRL)为基体,六方氮化硼(h-BN)为导热填料,并加入γ-聚谷氨酸(γ-PGA),制备了γ-PGA/h-BN/LPNRL复合材料。结果表明,γ-PGA提高了h-BN在水中以及LPNRL基体中的分散性。在LPNRL基体中加入质量分数分别为1.5%和15.0%的γ-PGA和h-BN时,γ-PGA/h-BN/LPNRL复合膜的热导率达到0.634 W/(m·k),是纯LPNRL膜热导率的4.77倍,且复合膜的拉伸强度提高到8.06 MPa,是纯LPNRL膜的3.10倍,扯断伸长率降至980%。h-BN的加入使得复合膜的热稳定性和拉伸强度均大幅提高。 Using low-protein natural rubber latex(LPNRL)as the matrix,hexagonal boron nitride(h-BN)as the thermally conductive filler,and addingγ-polyglutamic acid(γ-PGA),theγ-PGA/h-BN/LPNRL composite films were prepared by mechanical blending.The results showed thatγ-PGA could improve the dispersion of h-BN in water and LPNRL matrix.When the mass fraction ofγ-PGA and h-BN were 1.5%and 15.0%,the thermal conductivity of theγ-PGA/h-BN/LPNRL composite films increased to 0.634 W/(m·K),which was 4.77 times greater than that of pure LPNRL film.The tensile strength of the composite films increased to 8.06 MPa,which was 3.10 times stronger than that of the pure LPNRL film,and the elongation at break was reduced to 980%.The addition of h-BN could significantly improve the thermal stability and tensile strength of the composite films.
作者 郭会青 田晓慧 孙金煜 元以中 GUO Hui-qing;TIAN Xiao-hui;SUN Jin-yu;YUAN Yi-zhong(School of Materials Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《合成橡胶工业》 CAS 北大核心 2021年第5期393-397,共5页 China Synthetic Rubber Industry
基金 中央高校基本科研业务费资助项目(22 A 201514002)。
关键词 天然橡胶胶乳 六方氮化硼 Γ-聚谷氨酸 过敏 分散性 导热性能 natural rubber latex hexagonal boron nitride γ-polyglutamic acid allergy dispersivity thermal conductivity
  • 引文网络
  • 相关文献

参考文献4

二级参考文献26

  • 1涂春潮,齐暑华,周文英,赵红振,吴波.填充型导热橡胶研究进展[J].合成橡胶工业,2006,29(4):305-309. 被引量:22
  • 2涂春潮,齐暑华,周文英,赵红振,吴波.氮化硼填充MVQ制备导热橡胶的研究[J].橡胶工业,2007,54(2):93-95. 被引量:16
  • 3Chopra N G and Zettl A.Measurement of the elasticmodulus of a multi-wall boron nitride nanotube[J].Solid State Communications,1998,105(5):297-300.
  • 4Xiao Y,Yan X H,Cao J X,et al.Specific heat andquantized thermal conductance of single-walled boronnitride nanotubes[J].physical Review B,2004,69(20):205415.
  • 5Golberg D,Bando Y,Kurashima K,et al.Synthesisand characterization of ropes made of bn multiwallednanotubes[J].Scripta Materialia,2001,44(8-9):1561-1565.
  • 6Chen Y,Zou J,Campbell S J,et al.Boron nitridenanotubes; Pronounced resistance to oxidation!J].Applied physics Letters,2004,84(13):2430-2432.
  • 7Rubio A,Corkill J L and Cohen M L.Theory ofgraphitic boron nitride nanotubes[J].physical Review B,1994,49(7):5081-5084.
  • 8Ma R,Bando Y,Zhu H,et al.Hydrogen uptake inboron nitride nanotubes at room temperature[J].Journalof the American Chemical Society,2002,124(26):7672-7673.
  • 9Mpourmpakis G and Froudakis G E.Why boronnitride nanotubes are preferable to carbon nanotubes forhydrogen storage?:An ab initio theoretical study[J],Catalysis Today,2007,120(3-4):341-345.
  • 10Zhong B,Huang X,Wen G,et al.Large-scale fabrication of boron nitride nanotubes viaa facile chemical vapor reaction route and theircathodoluminescence properties[J].Nanoscale ResearchLetters,2010,6(1):36.

共引文献42

;
使用帮助 返回顶部