期刊文献+

基于特征融合的篡改与深度伪造图像检测算法 被引量:12

Detection Algorithm of Tamper and Deepfake Image Based on Feature Fusion
下载PDF
导出
摘要 如今,恶意篡改与深度伪造图片的数量呈现爆发性增长态势,而现有图像篡改检测方法普遍存在适用范围有限、检测准确率不高等问题。针对此类问题,文章提出了一种基于图像纹理特征的篡改与伪造图像分类检测算法,首次将Cb与Cr通道经过Scharr算子提取的一阶梯度边缘纹理图片与G通道经过Laplacian算子提取的二阶梯度边缘纹理图片结合,使用灰度共生矩阵(GLCM)融合并提取图片的纹理特征,最后经过EfficientNet进行篡改与深度伪造监测。通过在各类图像篡改与深度伪造数据集上的实验,验证了该模型在两类二分类检测任务上都具有广泛的适用性与高检测准确率,对于多种深度伪造人脸算法所生成图片的分类检测准确率均能达到99.9%。 Nowadays,malicious tampering and forgery images show an explosive growth trend.The existing image tampering detection methods generally have the problems of single application scope and low detection accuracy.To solve these problems,this paper proposes a tampering and forgery image classification detection network based on image texture features.For the first time,it combines the first step edge texture image of Cb and Cr channel through Scharr operator with the second step edge texture image of G channel through Laplacian operator.Gray Level Co-occurrence Matrix(GLCM)is used to extract the features of texture image.Finally,the tampering and forgery are monitored by EfficientNet.Experiments on various image tampering and deep forgery datasets show that the model has wide applicability and high detection accuracy in both types of detection,and the classification detection accuracy of images generated by various Deepfake algorithms can reach 99.9%.
作者 朱新同 唐云祁 耿鹏志 ZHU Xintong;TANG Yunqi;GENG Pengzhi(Investigation Institute of the People’s Public Security University of China,Beijing 100038,China)
出处 《信息网络安全》 CSCD 北大核心 2021年第8期70-81,共12页 Netinfo Security
基金 国家自然科学基金[61906199] 中央高校基本科研业务费[2019JKF426]。
关键词 图像篡改检测 深度伪造 深度学习 EfficientNet image tamper detection Deepfake deep learning EfficientNet
  • 相关文献

参考文献9

二级参考文献33

  • 1殷涛,葛元,王林泉.基于几何矩的字母手势识别算法[J].计算机工程,2004,30(18):127-129. 被引量:11
  • 2徐锦.人脸检测的自适应肤色分割算法研究[J].贵州大学学报(自然科学版),2007,24(2):171-174. 被引量:4
  • 3Schade O. On the quality of color-television images and the perception of colour detail[J]. Journal of the Society of Motion Pictures and Television Engineers,1958,65(3) :343-350.
  • 4Horst G J C V, Bouman M A. Spatio-temporal chromaticity discrimination[J]. JOSA, 1969,59(11):1 482- 1 488.
  • 5Granger E M, Heurtley J C. Visual chromaticity modulation transfer function[J]. JOSA, 1973,83(9):73- 74.
  • 6Kelly D H. Spatiotemporal variation of chromatic and achromatic contrast thresholds[J]. JOSA, 1983, 73(6):742-750.
  • 7Mullen K T. The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings[J].J Physiol,1985,359:381-400.
  • 8Poirson A B, Wandell B A. The appearance of colored patterns: Pattern-color separabiiity[J], J Opt Soc Am A, 1993,10(12):2458-2470.
  • 9Michael B. Handbook of optics classical optics, vision optics, X-ray optics[M]. New York: McGraw-Hill,2000.
  • 10Kutter M, Jordan F, Bossen F. Digital signature of color images using amplitude modulation[C]. Proceeding of the SPIE, EI97, 1997.

共引文献77

同被引文献68

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部