期刊文献+

基于深度可分离卷积的物联网设备识别模型 被引量:10

IoT Device Recognition Model Based on Depthwise Separable Convolution
下载PDF
导出
摘要 随着物联网设备数量的不断增长,物联网设备管理问题逐渐突出,如何在资源有限的物联网环境中准确地识别物联网设备是亟需解决的关键问题。针对物联网设备流量特征提取难的问题,文章提出了一种基于深度可分离卷积的物联网设备识别方法。该方法在会话粒度下利用载荷数据构造设备指纹,通过卷积层从设备指纹中提取深度特征。实验结果表明,该方法能在有限资源下有效识别设备类型。与标准CNN方法和人工特征提取技术相比,整体性能有所提高。 With the continuous growth of the number of IoT devices,the problem of IoT device management has become increasingly prominent.How to accurately identify IoT devices in the resource-limited IoT environment is a key problem to be solved urgently.To solve the difficulty in extracting the traffic features of devices in the Internet of Things(IoT),an Internet of Things device identification method based on deep separable convolution was proposed.In this method,device fingerprints were constructed using payload data at session granularity,and depth features were extracted from device fingerprints through convolutional layer.Experimental results show that this method can effectively identify device types with limited resources.Compared with the standard CNN method and manual feature extraction technique,the overall performance is improved.
作者 陈庆港 杜彦辉 韩奕 刘翔宇 CHEN Qinggang;DU Yanhui;HAN Yi;LIU Xiangyu(College of Information Network Security,People’s Public Security University of China,Beijing 100038,China;The First Research Institute of the Ministry of Public Security,Beijing 100048,China)
出处 《信息网络安全》 CSCD 北大核心 2021年第9期67-73,共7页 Netinfo Security
基金 中国人民公安大学2021年基本科研业务费重大项目[2021JKF105]。
关键词 物联网设备 流量特征 可分离卷积 设备指纹 Internet of Things device flow characteristics separable convolution device fingerprinting
  • 相关文献

同被引文献70

引证文献10

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部