摘要
针对红外图像相比于RGB图像纹理较少的特性,提出一种使用Lp归一化权重的红外目标检测网络压缩方法,旨在改进基于卷积神经网络的目标检测方法对红外图像场景的适应性,在压缩网络规模的同时提升其泛化能力。首先阐述了Lp归一化权重的稀疏性可以通过调节p进行精确控制这一现象。基于该现象,提出了一种目标检测网络稀疏化训练方法。该方法分别使用Lp球面梯度下降与经典梯度下降训练主干网络和检测器,以平衡网络规模与拟合精度。仿真红外数据集测试结果表明,其在网络规模和目标检测精度方面均优于稠密模型:在网络规模上,稀疏化方法将Faster R-CNN、(Single Shot multibox Detector,SSD)与YOLOv3的有效参数分别减少了52%、78%和66%;在检测精度上,稀疏化方法将Faster R-CNN、SSD和YOLOv3的(mean Average Precision, mAP)分别提高了0.1%、0.3%和0.2%,验证了所提出方法的有效性。
In view of the characteristic that the infrared image has less texture compared with RGB image, an infrared object detection network compression method using Lp normalized weight was proposed. It aimed at improving the adaptability of convolutional neural network based object detection framework to the infrared images, and compressing the scale of network while improving its generalization ability. Firstly, the phenomenon that the sparsity of Lp normalized weight can be precisely controlled by adjusting p was revealed. Based on the phenomenon, a sparsification method for object detection network was proposed. It respectively trained the backbone network and the detector with Lp spherical gradient descent and classical gradient descent, to balance the network scale and fitting accuracy. The tests on simulated infrared image dataset show that, the proposed method is superior to the dense model on both of network scale and detection accuracy: in terms of network scale,the sparsification reduces the effective parameters of Faster R-CNN, Single Shot multibox Detector(SSD) and YOLOv3 by 52%, 78% and 66% respectively;it also improves the mean Average Precision(mAP) of Faster RCNN, SSD and YOLOv3 by 0.1%, 0.3% and 0.2%, thus verifying the effectiveness of the proposed method.
作者
李维鹏
杨小冈
李传祥
卢瑞涛
谢学立
何川
Li Weipeng;Yang Xiaogang;Li Chuanxiang;Lu Ruitao;Xie Xueli;He Chuan(Institute of Missile Engineering,Rocket Force Engineering University,Xi’an 710025,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2021年第8期136-143,共8页
Infrared and Laser Engineering
基金
国家自然科学基金(61806209,61773389)
陕西省自然科学基金(2020JQ-490)
航空基金(201851U8012)。
关键词
红外目标检测
稀疏神经网络
Lp归一化
受约束梯度下降
infrared object detection
sparse neural network
Lp normalization
constrained gradient descent