期刊文献+

多目标优化Knee前沿搜索方法研究进展 被引量:4

A study of multi-objective optimization:focus on Knee
下载PDF
导出
摘要 多目标优化算法是近年来进化计算研究领域的一个热点,大多数的多目标优化算法试图找到问题的完整的Pareto前沿.然而,随着待优化问题目标个数的增加,算法需要更大的种群规模才能合理地描绘出完整的Pareto前沿.显然这样不仅增加了算法的运行时间,更增加了(决策者)最终解的选择难度.因此,聚焦于搜索Pareto前沿上的特定区域显得尤为重要,近年来也得到了越来越多学者的关注.Knee点指的是Pareto前沿上具有最大边际效用的点,在这个点附近,一个目标值的微小提升将带来至少一个其他目标值的巨大衰退,因此该点通常被认为是在没有特殊偏好的情况下对决策者更具吸引力的点.本文旨在对多目标优化中Knee前沿搜索相关的方法进行总结,包括Knee的检测方法、保留策略、测试问题等,并对多目标优化的Knee前沿搜索未来研究工作进行展望. Multi-objective optimization algorithms(MOEAs)have been a hot spot in the field of evolutionary computation in recent years.Most MOEAs try to find the whole Pareto front of the problem.However,as the number of objectives increases,the algorithm requires a larger population to reasonably describe the whole Pareto front.Obviously,this not only increases the running time of the algorithm,but also increases the difficulty of selecting the final solution.Therefore,it is particularly important to focus on searching a specific area on the Pareto front,which has also attracted the attention of more and more scholars.The Knee point refers to the point with the greatest marginal utility on the Pareto front.Near this point,a small increase of an objective value will lead to a huge decline in at least one other objective value.So this point is usually considered as a point that is more attractive to decision makers without special preferences.This article aims to summarize the methods related to Knee search in multi-objective optimization,including Knee detection methods and retention strategies,benchmark problems,etc.,and look forward to the future research work related to Knee search.
作者 李文桦 张涛 王锐 王凌 LI Wen-hua;ZHANG Tao;WANG Rui;WANG Ling(College of Systems Engineering,National University of Defense Technology,Changsha Hunan 410073,China;Hunan Key Laboratory of Multi-Energy System Intelligent Interconnection Technology,Changsha Hunan 410073,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第8期1133-1144,共12页 Control Theory & Applications
基金 国家自然科学基金项目(61773390,72071205) 湖南青年人才计划(2018RS3081) 国防科技大学重点项目(ZK18-02-09) 国防科技大学自主科研计划(ZZKY-ZX-11-04)资助.
关键词 多目标优化 进化算法 用户偏好 KNEE multi-objective optimization evolutionary algorithm user preferences Knee
  • 相关文献

参考文献7

二级参考文献35

  • 1王应明,傅国伟.运用无限方案多目标决策方法进行有限方案多目标决策[J].控制与决策,1993,8(1):25-29. 被引量:70
  • 2魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 3陈Ting.决策分析[M].北京:科学出版社,1987..
  • 4高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 5He Lihong, Yao Nan, Wu Jianhua, et al. Application of modified PSO in the optimization of reactive power [C]// 2009 Chinese Control and Decision Conference. [s. I.]: [s.n.],2009: 3493-3496.
  • 6Kennedy J, Eberhart R. Particle swarm optimization [C]//IEEE Int Conf on Neural Networks. Piseataway: IEEE Service Center, 1995: 1942-1948.
  • 7Eberhart R, Kennedy J. A new optimizer using partiele swarm theory [ G]//Proc on Int Symposium on Micro Machine and Human Science. Piseataway: IEEE Serviee Center, 1995.. 39-43.
  • 8Kennedy j. The particle swarm: ,social adaptation of knowledge[C]//IEEE Int Cord on Evolutionary Computation. Piscataway~ IEEE Service Center, 1997:303-308.
  • 9Pryke A,Mostaghim S,Nazemi A.Heatmap Visualization of Population Based Multi Objective Algorithms[C] //Proc.of EMO’06.Matsushima,Japan:[s.n.] ,2006:361-375.
  • 10Xu Yonghong,Hong Wenxue,Chen Na,et al.Parallel Filter:A Visual Classifier Based on Parallel Coordinates and Multivariate Data Analysis[C] //Proc.of International Conference on Intelligent Computing.Qingdao,China:[s.n.] :2007:1172-1183.

共引文献587

同被引文献46

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部