摘要
基于数据驱动的软测量模型广泛用于工业过程中产品质量与环保指标等难测参数的在线测量,该过程中存在的概念漂移问题易导致模型精度下降.如何有效识别过程概念变化并精准检测漂移样本是提高模型测量性能的关键.本文总结并分析目前漂移检测的研究思路与进展,为面向工业过程软测量的漂移检测算法提供设计指导.首先,介绍了概念漂移的通常定义与其在工业过程中的表现形式;然后,从检测依据与检测对象两个视角分析了目前具有代表性的检测方法;接着,讨论了这些算法的技术特点和当前工业领域的研究难点;最后,展望了未来的研究方向.
Data-driven soft sensor models are widely used for online measurement of difficult-to-measure parameters such as product quality and environmental protection indicators in industrial processes,and the concept drift in this process will lead to a decrease in model accuracy.Effective recognition of process concept changes and accurate detection of drift samples are the keys to improving model measure performance.This paper summarizes and analyzes the current research ideas and progress of drift detection,and provides design guidance for drift detection algorithms for industrial soft sensor modeling.First,the general definition of concept drift and its manifestation in the industrial process are introduced.Then,the current representative research methods are analyzed from the perspective of detection object and detection basis.Next,the technical characteristics of different algorithm strategies and the current research difficulties in the industrial field according to the literature are discussed.Finally,suggestions for future research directions are given.
作者
乔俊飞
孙子健
汤健
QIAO Jun-fei;SUN Zi-jian;TANG Jian(Faculty of Information Technology,Beijing University of Technology,Beijing,100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2021年第8期1159-1174,共16页
Control Theory & Applications
基金
国家自然科学基金项目(61703089,61890930-5)
国家科技重大专项项目(2018YFC1900801)资助.
关键词
工业过程
软测量
概念漂移
过程变量
样本分布
industrial process
soft sensor
concept drift
process variable
sample distribution