期刊文献+

原位制备氧化钛/氮掺杂石墨烯空心球光催化剂及其光催化CO_(2)还原性能研究 被引量:3

In-situ preparation of TiO_(2)/N-doped graphene hollow sphere photocatalyst with enhanced photocatalytic CO_(2) reduction performance
下载PDF
导出
摘要 利用光催化技术将二氧化碳转化为化学燃料是缓解温室效应以及能源危机的理想途径之一.因此,开发高效的光催化剂是当务之急.氧化钛由于具有优异的物理化学稳定性、成本低廉、无毒性以及环境友好等优点,近年来被广泛关注.此外,空心球结构光催化剂具有短的载流子扩散距离、良好的光散射性以及较大的比表面积等优点,从而成为光催化二氧化碳还原最有潜力的候选材料.但纯的氧化钛空心球由于较快的光生载流子复合速率从而导致低的光催化效率.因此,为了应对这一挑战,我们尝试在氧化钛空心球表面负载助催化剂用以促进光生载流子的分离,从而提高光催化二氧化碳还原转换效率.在各种助催化剂中,贵金属被证明是有效的.然而,高成本以及稀缺性限制了贵金属的广泛应用.因此,有必要设计成本低廉的助催化剂替代品.石墨烯以其优异的导电性、较大的功函数以及来源丰富而备受关注.当石墨烯与n型半导体光催化剂结合在一起时,能够显著促进光生电子从半导体光催化剂向石墨烯的定向迁移,从而有效地抑制光生电子与空穴的复合.当石墨烯中掺杂氮元素时,石墨烯骨架中的电子密度会进一步提高,同时,氮原子中的孤对电子更加有利于石墨烯骨架中的电子传输.此外,氮掺杂石墨烯中不同的氮位点(吡碇氮、吡咯氮和石墨氮)作为路易斯碱位点,能够用以二氧化碳分子的吸附以及活化.然而,迄今为止,最常用的制备半导体/氮掺杂石墨烯纳米复合光催化剂的方法是在氮掺杂石墨烯表面生长半导体光催化剂.所制备的光催化剂与氮掺杂石墨烯之间界面接触有限,不利于光生载流子的快速传递与分离.此外,助催化剂和光催化剂之间建立高质量的界面接触可以有效地抑制光生电子与空穴的复合.因此,有必要绕开传统制备方法的弊端,从而设计与光催化剂之间具有大的接触面积和紧密的界面接触以及具有丰富活性位点的高质量氮掺杂石墨烯助催化剂.本文提出了一种新的策略,以吡啶分为氮掺杂石墨烯的前驱体,通过化学气相沉积方法在氧化钛空心球表面原位生长超薄氮掺杂石墨烯层(1〜2层).此外,在高温状态下,吡啶分子脱氢生成具有优异扩散性质的脱氢吡唳自由基气相分子.随着反应的进行,氧化钛表面的每个纳米颗粒基元表面都能够与吡碇分子充分接触,从而保障两者之间大面积以及紧密的界面接触.光催化二氧化碳还原性能测试结果表明,优化后的氧化钛/氮掺杂石墨烯空心球纳米复合材料的二氧化碳光催化总转化率(一氧化碳、甲醇和甲烷的总产率)为18.11μmolg^(-1)h^(-1),是空白氧化钛空心球的4.6倍和商业P25的10.7倍.高分辨透射电子显微镜、X射线光电子能谱以及拉曼光谱结果表明,成功构建了氧化钛与氮掺杂石墨烯之间紧密接触的界面.同时,氮掺杂石墨烯的引入能够显著增强复合光催化剂的表面光热效应以及氧化钛与氮掺杂石墨烯界面肖特基势垒的形成均有助于促进光催化二氧化碳还原反应的进行.因此,本文为石墨烯基光助催化剂的原位构建提供了一种行之有效的策略. Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
作者 王立博 朱必成 程蓓 张建军 张留洋 余家国 Libo Wang;Bicheng Zhu;Bei Cheng;Jianjun Zhang;Liuyang Zhang;Jiaguo Yu(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,Hubei,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,Guangdong,China;Laboratory of Solar Fuel,Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan 430074,Hubei,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1648-1658,共11页 催化学报(英文)
基金 国家自然科学基金(21905219,51872220,51932007,51961135303,21871217,U1905215,U1705251) 中央高校基本科研业务费专项资金资助(武汉理工大学:2019IVB050) 先进能源科技广东实验室仙湖实验室创新研究基金(XHD2020-001).
关键词 超薄氮掺杂石墨烯层 化学气相沉积 紧密界面接触 光催化CO_(2)还原 吡啶氮位点 Ultrathin N-doped graphene layer Chemical vapor deposition Intimate interfacial contact Photocatalytic CO_(2)reduction Pyridinic N site
  • 相关文献

参考文献1

二级参考文献2

共引文献16

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部