期刊文献+

右GWF-封闭环上的Gorenstein弱平坦模及维数

Gorenstein weak flat modules and dimension over right GWF-closed rings
原文传递
导出
摘要 研究了右GWF-封闭环上Gorenstein弱平坦模和Gorenstein弱平坦维数的一些性质,并给出了模的Gorenstein弱平坦维数的等价刻画。 The properties of Gorenstein weak flat modules and Gorenstein weak flat dimension over right GWF-closed rings are investigated in this paper,and the Gorenstein weak flat dimension of modules is characterized.
作者 宋彦辉 郭婷 SONG Yan-hui;GUO Ting(School of General Education,Lanzhou College of Information Science and Technology,Lanzhou 730300,Gansu,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第8期99-104,共6页 Journal of Shandong University(Natural Science)
关键词 右GWF-封闭环 Gorenstein弱平坦模 Gorenstein弱平坦维数 right GWF-closed ring Gorenstein weak flat module Gorenstein weak flat dimension
  • 相关文献

参考文献2

二级参考文献16

  • 1ROTMAN J J. An introduction to Homological algebra[M]. New York: Academic Press, 1979.
  • 2ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University: Natural Science, 1993, 10(1):1-9.
  • 3ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(1):611-633.
  • 4HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189(1):167-193.
  • 5BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J]. Comm Algebra, 2009, 37:855-868.
  • 6BENNIS D. Weak Gorenstein global dimension[J]. Int Electron J Algebra, 2010, 8:140-152.
  • 7GAO Zenghui. Weak Gorenstein projective, injective and flat modules[J]. J Algebra Appl, 2013, 12(2):1250165.1-1250165.15.
  • 8GAO Zenghui, WANG Fanggui. All Gorenstein hereditary rings are coherent[J]. J Algebra Appl, 2014, 13(4):1350140.1-1350140.5.
  • 9GAO Zenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Comm Algebra, 2015, 43(9):3857-3868.
  • 10ENOCHS E E, JENDA O M G. Relative homological algebra[M].Berlin:Walter de Gruyer, 2000.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部