期刊文献+

波形流道增强质子交换膜燃料电池性能 被引量:8

Wavy channels to enhance the performance of proton exchange membrane fuel cells
原文传递
导出
摘要 质子交换膜燃料电池(PEMFC)的性能和耐久性受到燃料的输送和水管理等的限制,流道对PEMFC的质量传输起着至关重要的作用。该文设计了一个三维波形流道,建立了与实验条件一致的单根直流道模型,对比研究了直流道和波形流道对PEMFC性能提升的机理,分析了两种流道内氧气、液态水、速度以及电流密度分布。研究结果表明:在较高电流密度下,三维波形流道强化了狭窄通道部分氧气向催化层的传输,提高了氧气的供应,有效地去除了流道内的液态水,使峰值功率密度提高了10.16%。 The performance and durability of proton exchange membrane fuel cells(PEMFCs) are limited by factors related to fuel delivery and water management with the flow channel significantly affecting these factors. This study investigated flow in a three-dimensional wavy channel using a single straight channel model consistent with the experimental conditions. The model was used to analyze the performance of PEMFCs with straight channels and wavy channels and the oxygen, liquid water, velocity and current density distributions in the two channels. The results show that for high current densities, the three-dimensional wavy channel enhances the oxygen transfer from the narrow channel to the catalytic layer, improves the oxygen supply, effectively removes the liquid water in the channel, and increases the peak power density by 10.16%.
作者 李子君 王树博 李微微 朱彤 谢晓峰 LI Zijun;WANG Shubo;LI Weiwei;ZHU Tong;XIE Xiaofeng(School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819,China;Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing 100084,China;Shanxi Research Institute for Clean Energy,Tsinghua University,Taiyuan 030032,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第10期1046-1054,共9页 Journal of Tsinghua University(Science and Technology)
基金 山西省科技重大专项(20181101006)。
关键词 质子交换膜燃料电池(PEMFC) 三维流场 气体传输 水管理 proton exchange membrane fuel cell(PEMFC) three dimensional flow field gas transport water management
  • 相关文献

参考文献3

二级参考文献161

  • 1Gottesfeld, S., Zawodzinski, T. A.: Polymer electrolyte fuel cells. In: Alkire, R., Gerischer, H., Kolb, D. et al. eds. Ad- vances in Electrochemical Science and Engineering, Vol. 5, Wiley VCH, Weinheim, Germany, 195-301 (1997).
  • 2Perry, M.L., Fuller, T.E: A historical perspective of fuel cell technology in the 20th century. J. Electrochem. Soc. 149, $59-$67 (2002).
  • 3Wang, C.Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727-4766 (2002).
  • 4Bernardi, D.M., Verbrugge, M.W.: Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J. 37, 1151-1163 (1991).
  • 5Bernardi, D.M., Verbrugge, M.W.: A mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc. 139, 2477-2491 (1992).
  • 6Springer, T.E., Zawodzinski, T.A., Gottesfeld, S.: Polymerelectrolyte fuel cell model. J. Electrochem. Soc. 138, 2334- 2342 (1991).
  • 7Fuller, T.E, Newman, J.: Water and thermal management in solid-polymer-electrolyte fuel cells. J. Electrochem. Soc. 140, 1218-1225 (1993).
  • 8Maggio, G., Recupero, V., Mantegazza, C.: Modeling of tem- perature distribution in a solid polymer electrolyte fuel cell stack. J. Power Sources 62, 167-174 (1996).
  • 9Motupally, S., Becket, A.J., Weidner, J.W.: Diffusion of water in nation 115 membranes. J. Electrochem. Soc. 147, 3171- 3177 (2000).
  • 10Janssen, G.J.M.: A phenomenological model of water transport in a proton exchange membrane fuel cell. J. Electrochem. Soc. 148, A1313-A1323 (2001).

共引文献13

同被引文献48

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部