摘要
随着基因组医学的迅猛发展,海量遗传学数据的涌现使得孟德尔随机化方法(MR)应运而生。MR将基因组数据纳入传统的流行病学研究设计中,以推断危险因素与疾病风险之间的因果关系。这不仅在很大程度上避免了混杂因素及反向因果关系对研究结果的影响,还通过纳入个体与生俱来的遗传标志来反映相关危险因素和疾病风险间可能的因果联系。近年来,MR在肾脏疾病尤其是慢性肾脏病和糖尿病肾病的病因推断研究中得到了较广泛应用,为认识疾病本质和科学化防治提供新思路。本文对MR进行概述,并介绍了其在慢性肾脏病和糖尿病肾病研究中的应用。
With the rapid development of genomic medicine and the massive amounts of genetic data springing up,Mendelian randomization(MR)method emerged as the times require.MR integrates genomic data into traditional epidemiological studies to infer causality of risk factors on diseases.It not only largely avoids the influence of confounding factors and reverse causation on results,but also reflects the possible causal relationship between risk factors and diseases through individual’s inborn genetic markers.In recent years,this method has been widely used in the etiological inference of kidney diseases,especially chronic kidney disease and diabetic nephropathy,which can provide new ideas for understanding the nature of disease and scientific prevention and treatment.This article reviews MR and its application in chronic kidney disease and diabetic nephropathy.
作者
逯静茹(综述)
刘志红(审校)
LU Jingru;LIU Zhihong(National Clinical Research Center of Kidney Diseases,Jinling Hospital,Southeast University School of Medicine,Nanjing 210016,China)
出处
《肾脏病与透析肾移植杂志》
CAS
CSCD
北大核心
2021年第4期351-356,共6页
Chinese Journal of Nephrology,Dialysis & Transplantation
基金
江苏省临床医学研究中心项目(YXZXA2016003)。
关键词
孟德尔随机化
因果推断
慢性肾脏病
糖尿病肾病
Mendelian randomization
causal inference
chronic kidney disease
diabetic nephropathy